Modelling the Potential Habitat of Taxus baccata Linn. in Shi-Yomi District of Arunachal Pradesh, India
DOI:
https://doi.org/10.55863/ijees.2024.0344Keywords:
Cancer, Medicinal plant, Taxol, Species distribution model, YewAbstract
Taxus baccata Linn., commonly known as Yew is a temperate conifer tree usually small to medium in size. The barks, leaves, and twigs have traditional medicinal uses. It is also processed to make taxol which is used in the preparation of anti-cancer drugs (breast and ovarian cancer). The plant is rare, endangered, and listed in Appendix II of CITES. In this study, we used the maximum entropy (MaxEnt) model to predict the potential distribution of the species. The results show an area of 2444.01 km2 (88.77%) as least suitable, followed by 237.06 km2 (8.61%%) as moderately suitable and only 72.01 km2 (2.62%) as highly suitable category. The model performance was reasonably good and reliable with a mean Area under curve (AUC) of 0.934 and a standard deviation of 0.018. Isothermality, precipitation seasonality, and mean diurnal range of temperature significantly contributed to predicting the suitable habitat of T. baccata. An examination of the model results shows the northern part of the district is the potential area of occurrence for T. baccata in the natural stand and suitable for regeneration. Thus, the model outcomes could be used to explore the natural population status of the plant.
References
Anderson, B.J., Arroyo, B.E., Collingham, Y.C., Etheridge, B., Fernandez-De-Simon, J., Gillings, S., Gregory, R.D., Leckie, F.M., Sim, I.M.W., Thomas, C.D., Travis, J. and Redpath, S.M. 2009. Using distribution models to test alternative hypotheses about a species’ environmental limits and recovery prospects. Biological Conservation, 142(3), 488-499. https://doi.org/10.1016/j.biocon.2008. 10.036
Baldwin, R. 2009. Use of maximum entropy modeling in wildlife research. Entropy, 11, 854-866. https://doi.org/10.3390/e11040854
Beckstrom-Sternberg, S.M. and Duke, J.A. 1993. International Yew Resource Conference.Berkeley, USA.
Beniwal, B.S. and Haridarsan, K. 1992. Natural distribution and status of regeneration of gymnosperms in Arunachal Pradesh. Indian Forester, 118, 96-101.
Cameron, S.I. and Smith, R.F. 2002. Bringing Blue Sky Biology Down to Earth: Linking Natural Products Research with Commercialization. Natural Resources Canada, Canadian Forest Service, Atlantic Forestry Centre.
Dormann, C.F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G., Marquéz, R.G., Gruber, B., Lafourcade, B., Leitão, P.J., Münkemüller, T., McClean, C., Osborne, P.E., Reineking, B., Schröder, B., Skidmore, A.K., Zurell, D. and Lautenbach, S. 2013. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography, 36(1), 27-46. https://doi.org/10.1111/j.1600-0587.2012.07348.x
Dormann, C.F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G., Marquéz, R.G., Gruber, B., Lafourcade, B., Leitão, P.J., Münkemüller, T., McClean, C., Osborne, P.E., Reineking, B., Schröder, B., Skidmore, A.K., Zurell, D. and Lautenbach, S. 2013. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography, 36(1), 27-46. https://doi.org/10.1111/j.1600-0587.2012.07348.x
Elith, J. and Leathwick, J.R. 2009. Species distribution models: ecological explanation and prediction across space and time. Annual Review of Ecology, Evolution, and Systematics, 40, 677-697. https://doi.org/10.1146/annurev.ecolsys. 110308.120159
Elith, J., Kearney, M. and Phillips, S. 2010. The art of modelling range-shifting species. Methods in Ecology and Evolution, 1, 330-342. https://doi.org/10.1111/j.2041-210X.2010.00036.x
Farrell, A., Wang, G., Rush, S.A., Martin, J.A., Belant, J.L., Butler, A.B. and Godwin, D. 2019. Machine learning of large-scale spatial distributions of wild turkeys with high-dimensional environmental data. Ecology and Evolution, 9(10), 5938-5949. https://doi.org/10.1002/ece3.5177
Feng, X., Park, D.S., Liang, Y., Pandey, R. and Papeº, M. 2019. Collinearity in ecological niche modeling: confusions and challenges. Ecology and Evolution, 9(18), 10365-10376. https://doi.org/10.1002/ece3.5555
Glor, R.E. and Warren, D. 2011. Testing ecological explanations for biogeographic boundaries. Evolution, 65, 673-683. https://doi.org/10.1111/j.1558-5646.2010.01177.x
Graham, C.H. and Hijmans, R.J.A. 2006. Comparison of methods for mapping species ranges and species richness. Global Ecology and Biogeography, 15(6), 578-587. https://doi.org/10.1111/j.1466-8238.2006.00257.x
Graham, C.H., Elith, J., Hijmans, R.J., Guisan, A., Townsend Peterson, A., Loiselle, B.A., NCEAS and Predicting Species Distributions Working Group. 2008. The inuence of spatial errors in species occurrence data used in distribution models. Journal of Applied Ecology, 45(1), 239-247. https://doi.org/10.1111/j.1365-2664.2007.01408.x
Guisan, A., Tingley, R., Baumgartner, J.B., Naujokaitis-Lewis, I., Sutcliffe, P.R., Tulloch, A.I.T., Regan, T.J., Brotons, L., Mcdonald-Madden, E., Mantyka-Pringle, C., Martin, T.G., Rhodes, J.R., Maggini, R., Settereld, S.A., Elith, J., Schwartz, M.W., Wintle, B.A., Broennimann, O., Austin, M., Ferrier, S., Kearney, M.R., Possingham, H.P. and Buckley, Y.M. 2013. Predicting species distributions for conservation decisions. Ecology Letters, 16, 1424-1435. https://doi.org/10.1111/ele.12189
Haridasan, K., Shukla, G.P. and Beniwal, B.S. 1995. Medicinal plants of Arunachal Pradesh. SFRI Information Bulletin No. 5. State Forest Research Institute, Itanagar.
Hernandez, P.A., Graham, C.H., Master, L.L. and Albert, D.L. 2006. The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography, 29(5), 773-785. https://doi.org/10.1111/j.0906-7590.2006.04700.x
Hijmans, R.J., Schreuder, M., De la Cruz, J. and Guarino, L. 1999. Using GIS to check coordinates of germplasm accessions. Genetic Resources and Crop Evolution, 46, 291-296. https://doi.org/10.1023/A:1008628005016
Huntley, B., Collingham, Y.C., Willis, S.G. and Green, R.E. 2008. Potential impacts of climatic change on European breeding birds. PLoS One, 3(1), e1439. https://doi.org/10.1371/journal.pone.0001439
Julliard, R., Jiguet, F. and Couvet, D. 2004. Common birds facing global changes: what makes a species at risk? Global Change Biology, 10(1), 148-154. https://doi.org/10.1111/j.1365-2486.2003.00723.x
Kremen, C., Cameron, A., Moilanen, A., Phillips, S.J., Thomas, C.D., Beentje, H., Dransfield, J., Fisher, B.L., Glaw, F., Good, T.C., Harper, G.J., Hijmans, R.J., Lees, D.C., Louis, E. Jr., Nussbaum, R.A., Raxworthy, C.J., Razafimpahanana, A., Schatz, G.E., Vences, M., Vieites, D.R., Wright, P.C. and Zjhra, M.L. 2008. Aligning conservation priorities across taxa in Madagascar with high-resolution planning tools. Science, 320(5873), 222-226. https://doi.org/10.1126/science.1155193
Manzoor, S.A., Grifths, G. and Lukac, M. 2018. Species distribution model transferability and model grain size–ner may not always be better. Scientific Reports, 8(1), 1-9. https://doi.org/10.1038/s41598-018-25437-1
Merow, C., Smith, M.J. and Silander, J.A. Jr. 2013. A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography, 36(10), 1058-1069. https://doi.org/10.1111/j.1600-0587.2013.07872.x
Naimi, B. and Araújo, M.B. 2016, Sdm: a reproducible and extensible R platform for species distribution modelling. Ecography, 39(4), 368-375. https://doi.org/10.1111/ecog.01881
Nimachow, G., Rawat, J.S. and Dai, O. 2010. Status of Himalayan yews in West Kameng district of Arunachal Pradesh. Current Science, 98(11), 1434-1437. https://www.jstor.org/stable/24108213
Nimasow, G., Nimasow, O.D., Rawat, J.S., Tsering, G. and Litin, T. 2016. Remote sensing and GIS-based suitability modeling of medicinal plant (Taxus baccata Linn.) in Tawang district, Arunachal Pradesh, India. Current Science, 110, 219-227. https://doi.org/10.18520/cs/v110/i2/219-227
Parmesan, C. and Yohe, G. 2003. A globally coherent ngerprint of climate change impacts across natural systems. Nature, 421(6918), 37-42. https://doi.org/10.1038/nature01286
Parolo, G., Rossi, G. and Ferrarini, A. 2008. Toward improved species niche modelling: Arnica montana in the Alps as a case study. Journal of Applied Ecology, 45(5), 1410-1418. https://doi.org/10.1111/j.1365-2664.2008.01516.x
Pearson, R.G. 2007. Species distribution modeling for conservation educators and practitioners. Synthesis. American Museum of Natural History. Available at http://ncep.amnh.org. Accessed on May 9, 2024.
Pearson, R.G. and Dawson, T.P. 2003. Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Global Ecology and Biogeography, 12(5), 361-371. https://doi.org/10.1046/j.1466-822X.2003.00042.x
Pearson, R.G., Dawson, T.P. and Liu, C. 2004. Modelling species distributions in Britain: a hierarchical integration of climate and land-cover data. Ecography, 27, 285-298. https://doi.org/10.1111/j. 0906-7590.2004.03740.x
Peterson, A.T., Papeº, M. and Soberón, J. 2008. Rethinking receiver operating characteristic analysis applications in ecological niche modeling. Ecological Modelling, 213(1), 63-72. https://doi.org/10.1016/j. ecolmodel.2007.11.008
Phillips, L.D., Dwyer, D.B. and Dabur Research Foundation. 1999. Sustainable harvesting of Himalayan yews. pp. 147-154. In: Anonymous (Ed.) Medicinal Plant Trade in Europe: Conservation and Supply. Proceedings of the First International Symposium on Conservation of Medicinal Plants in Trade in Europe, 22-23 June 1998, Royal Botanic Gardens, Kew, United Kingdom. TRAFFIC Europe, WWF-Belgium. Brussels, Belgium
Phillips, S.J. 2008. Transferability, sample selection bias and background data in presence-only modelling: a response to Peterson et al. (2007). Ecography, 31(2), 272-278. https://doi.org/10. 1111/j.0906-7590.2008.5378.x
Phillips, S.J., Anderson, R.P. and Schapire, R.E. 2006. Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190(3-4), 231-259. https://doi.org/10.1016/j.ecolmodel.2005.03.026
Price, R.A. 1990. The genera of Taxaceae in the Southeastern United States. Journal of the Arnold Arboretum, 71(1), 69-91. https://doi.org/10.5962/bhl.part.24926
Purohit, A., Maikhuri, R.K., Rao, K.S. and Nautiyal S. 2001. Impact of bark removal on survival of Taxus baccata L. (Himalayan yew) in Nanda Devi Biosphere Reserve, Garhwal Himalaya, India. Current Science, 81, 586-590. https://www.jstor.org/stable/24105896
Radosavljevic, A. and Anderson, R.P. 2014. Making better Maxent models of species distributions: complexity, overtting and evaluation. Journal of Biogeography, 41(4), 629-643. https://doi.org/10.1111/jbi. 12227
Ramírez Villegas, J. and Bueno Cabrera, A. 2009. Working with climate data and niche modeling: I. Creation of bioclimatic variables. International Center for Tropical Agriculture (CIAT), Cali, Colombia.
Rinnhofer, L.J, Roura-Pascual, N., Arthofer, W., Dejaco, T., Thaler-Knoflach, B., Wachter, G.A., Christian, E., Steiner, F.M. and Schlick-Steiner, B.C. 2012. Iterative species distribution modelling and ground validation in endemism research: An Alpine jumping bristletail example. Biodiversity and Conservation, 21, 2845-2863. https://doi.org/10.1007/s10531-012-0341-z
Saqib, Z., Malik, R.N. and Husain, S.Z. 2006. Modeling potential distribution of Taxus wallichiana in Palas Valley, Pakistan. Pakistan Journal of Botany, 38(3), 539-542.
Schippmann, U. 2001. Medicinal Plants Significant Trade Study. CITES Project S-109, German Federal Agency for Nature Conservation, Bonn.
Shukla, G.P., Rao K. and Haridarsan, K. 1994. Taxus baccata in Arunachal Pradesh. Arunachal Forest News, 12, 1-7.
Skov, F. 2000. Potential plant distribution mapping based on climatic similarity. Taxon, 49, 503-515. https://doi.org/10.2307/1224346
Sony, R.K., Sen, S., Kumar, S., Sen, M. and Jayahari, K.M. 2018. Niche models inform the effects of climate change on the endangered Nilgiri Tahr (Nilgiritragus hylocrius) populations in the southern Western Ghats, India. Ecological Engineering, 120, 355-363. https://doi.org/10.1016/j.ecoleng.2018.06.017
Svenning, J.C. and Skov, F. 2004. Limited filling of the potential range in European tree species. Ecology Letters, 7(7), 565-573. https://doi.org/10.1111/j.1461-0248.2004. 00614.x
Swets, J.A. 1988. Measuring the accuracy of diagnostic systems. Science, 240(4857), 1285-1293. https://doi.org/10.1126/science.3287615
Thomas, P.A. and Polwart, A. 2003. Taxus baccata L. Journal of Ecology, 91(3), 489-524. https://doi.org/10.1046/j.1365-2745.2003.00783.x
Vaughan, I.P. and Ormerod, S.J. 2003. Improving the quality of distribution models for conservation by addressing shortcomings in the eld collection of training data. Conservation Biology, 17(6), 1601-1611. https://doi.org/10.1111/j.1523-1739.2003.00359
Wisz, M.S., Hijmans, R.J., Li, J., Peterson, A.T., Graham, C.H., Guisan, A., NCEAS, and Predicting Species Distributions Working Group. 2008. Effects of sample size on the performance of species distribution models. Diversity and Distribution, 14(5), 763-773. https://doi.org/10.1111/j.1472-4642.2008. 00482.x
Yi, Y.J., Cheng, X., Yang, Z.F. and Zhang, S.H. 2016. MaxEnt modeling for predicting the potential distribution of endangered medicinal plant (H. riparia Lour.) in Yunnan, China. Ecological Engineering, 92, 260-269. https://doi.org/10.1016/j.ecoleng.2016.04.010
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Gektum Tangu, Gibji Nimasow
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.