Phyllosphere Microbiome in Ecosystem Management and Plant Growth Promotion for Agricultural Sustainability
DOI:
https://doi.org/10.55863/ijees.2024.0300Keywords:
Phyllosphere, Microbiomes, Ecosystem, Plants, BiostimulantsAbstract
This review paper attempts to interpret the various role of phyllosphere microbiome, survival, resistant mechanisms to confront the adverse environmental conditions, production of pigment, extracellular polysaccharides, biosurfactants to promote surface attachment desiccation protection, volatile organic compounds, phytoalexins, as a defensive role to compete for space and nutrients. The beneficial phyllosphere microbes contributing to promotion of plant growth by facilitating nutrient acquisition, modulating hormonal signaling, biocontrol for plant pathogens in multi-various crops is discussed in detail. Phyllobacteria show encouraging interactions with host plants in improving plant health and biometric traits by regulating nutrient acquisition, phytohormones production, biotic and abiotic stress management. The members of genera Bacillus, Enterobacter, Microbacterium, Methylobacterium, Stenotrophomonas, Pseudomonas, Pseudarthrobacter, and Kocuria were the most dominant plant growth promoting bacteria reported in phyllosphere. The beneficial phyllosphere microorganism enhances crop yield while reducing the environmental footprint associated with synthetic fertilizers and pesticides. The review focuses and thrust on the development as well as commercialization of biostimulants derived from phyllosphere microbiomes. These biostimulants, and their metabolites, can be tapped to enhance plant growth, nutrient uptake, and overall crop performance in organic farming. Furthermore, this review paper focus on certain drawbacks that there have been few researches on phyllosphere yeast and its symbiotic association with bacteria, thereby emphasizing subsequent research in this area.
References
Abadi, V.A.J.M., Sepehri, M., Rahmani, H.A., Zarei, M., Ronaghi, A., Taghavi, S.M. and Shamshiripour, M. (2020). Role of dominant phyllosphere bacteria with plant growth–promoting characteristics on growth and nutrition of maize (Zea mays L.). J. Soil Sci. Plant Nutr. 20:2348-63. https://doi.org/10.1007/s42729-020-00302-1.
Ali, N., Al-Awadhi, H., Dashti, N., Khanafer, M., El-Nemr, I., Sorkhoh, N. and Radwan, S.S., (2015). Bioremediation of atmospheric hydrocarbons via bacteria naturally associated with leaves of higher plants. Int. J. Phytoremediation. 17(12):1160-1170. https://doi.org/10.1080/15226514.2015.1045125.
Alymanesh, M.R., Taheri, P. and Tarighi, S. (2016). Pseudomonas as a frequent and important quorum quenching bacterium with biocontrol capability against many phytopathogens. Biocontrol Sci. Technol. 26:1719. https://doi.org/10.1080/09583157.2016.1239065.
Arun, K.D., Sabarinathan, K.G., Gomathy, M., Kannan, R. and Balachandar, D. (2020). Mitigation of drought stress in rice crop with plant growth‐promoting abiotic stress‐tolerant rice phyllosphere bacteria. J. Basic Microbiol. 60(9):768-786. doi:org/10.1002/jobm.202000011.
Bala, S., Garg, D., Thirumalesh, B.V., Sharma, M., Sridhar, K., Inbaraj, B.S. and Tripathi, M. (2022). Recent strategies for bioremediation of emerging pollutants: a review for a green and sustainable environment. Toxics. 10(8):484. https://doi.org/10.3390/toxics10080484.
Bashir, I., War, A.F., Rafiq, I., Reshi, Z.A., Rashid, I. and Shouche, Y.S. (2022). Phyllosphere microbiome: Diversity and functions. Microbiol. Res. 254:126888. https://doi.org/10.1016/j.micres.2021.126888.
Batool, F., Rehman, Y. and Hasnain, S. (2016). Phylloplane associated plant bacteria of commercially superior wheat varieties exhibit superior plant growth promoting abilities. Front. Life Sci. 9:313-322. doi:10.1080/21553769.2016.1256842.
Belova, S.E., Baani, M., Suzina, N.E., Bodelier, P.L., Liesack, W. and Dedysh, S.N. (2011). Acetate utilization as a survival strategy of peat‐inhabiting Methylocystis spp. Environ. Microbiol. Rep. 3(1):36-46.https://doi.org/10.1111/j.1758-2229.2010.00180.x.
Bodenhausen, N., Bortfeld-Miller, M., Ackermann, M. and Vorholt, J.A. (2014). A synthetic community approach reveals plant genotypes affecting the phyllosphere microbiota. PLoS Genet. 10(4):e1004283. https://doi.org/10.1371/journal.pgen.1004283.
Burch, A.Y., Zeisler, V., Yokota, K., Schreiber, L. and Lindow, S.E. (2014). The hygroscopic biosurfactant syringafactin produced by Pseudomonas syringae enhances fitness on leaf surfaces during fluctuating humidity. Environ. Microbiol. 16(7):2086-98. https://doi.org/10.1111/1462-2920.12437.
Carrell, A.A. and Frank, A.C., (2014). Pinus flexilis and Picea engelmannii share a simple and consistent needle endophyte microbiota with a potential role in nitrogen fixation. Front. microbiol. 5:101834. https://doi.org/10.3389/fmicb.2014.00333.
Charles, J.L., Manjula, A.C. and Keshamma Entooru. (2021). https://www.chemijournal.com/archives/2021/vol9issue5/PartA/9-4-170-926.pdf.
Devarajan, A.K., Muthukrishanan, G., Truu, J., Truu, M., Ostonen, I., Kizhaeral, S., Panneerselvam, P., and Kuttalingam Gopalasubramanian, S. (2021). The foliar application of rice phyllosphere bacteria induces drought-stress tolerance in (Oryza sativa L.), Plants. 10:387. https://doi.org/10.3390/plants10020387.
Enya, J., Shinohara, H., Yoshida, S., Tsukiboshi, T., Negishi, H., Suyama, K. and Tsushima, S. (2007). Culturable leaf-associated bacteria on tomato plants and their potential as biological control agents. Microb. Ecol. 53:524-536. https://doi.org/10.1007/s00248-006-9085-1.
Farre-Armengol, G., Filella, I., Llusia, J. and Penuelas, J. (2016). Bidirectional interaction between phyllospheric microbiotas and plant volatile emissions. Trends Plant Sci. 21(10):854-60. https://doi.org/10.1016/j.tplants.2016.06.005.
Fu, S.F., Sun, P.F., Lu, H.Y., Wei, J.Y., Xiao, H.S., Fang, W.T., Cheng, B.Y. and Chou, J.Y. (2016). Plant growth-promoting traits of yeasts isolated from the phyllosphere and rhizosphere of Drosera spatulata Lab. Fungal Biol. 120(3):433-448. https://doi.org/10.1016/j.funbio.2015.12.006.
Gayan, A., Phukan, S., Bhattacharyya, A., Sonowal, D., Dutta, N. and Nath, D.J. (2023). Leaf Surface Colonizing Pink Pigmented Facultative Methylotrophs Harnessed for Their Plant Growth Promoting Traits. J. Indian Soc. Soil Sci. 71(3):342-350. doi:10.5958/0974-0228.2023.00031.2.
Gayathry, G., and N. Gnanachitra. (2021). Pink-Pigmented Facultative Methylotrophic Bacteria (PPFM) for plant growth promotion and drought mitigation - A Boon for FPOs. In: Farmer Producer Companies in Cuddalore District of Tamil Nadu: Challenges and Opportunities. (eds.) N. Sriram et al. TNAU Press. Coimbatore, Shanlax publications, Madurai. pp. 354-366 (ISBN: 978-93-91373-00-9).
Gayathry, G., Natarjan, K., Veeramani, A., and S. Jaya Prabhavathi. (2023).Assessment of liquid microbial consortium on the field of pearl millet (Pennisetum glaucum) in Cuddalore district under rainfed conditions. In: Proc: International seminar on Sensitizing the millet farming consumption and nutritional security. Challenges and opportunities.9&10 th November, Dept. of Agrl. Economics and Agricultural Extension, PAJANCOA&RI, Karaikal. p.6. ISBN:978-93-88993-82-1.
Ismail, S. and Mohammed, F. (2023). Effect of foliar spraying with pink pigmented facultative methylotrophic bacteria on the growth and productivity of strawberry. Arab Univ J Agric Sci. 31(1): 1-14. https://doi.org/10.21608/ajs.2023.135514.1479.
Karan, R., Kalaimathi, D., Renganathan, P. and Balabaskar, P. (2022). Isolation and characterization of phylloplane associated bacteria and its in-vitro antagonistic activity against Bipolaris oryzae. Agricultural Science Digest. https://doi.org/10.18805/ag.D-5452.
Krimm, U., Abanda-Nkpwatt, D., Schwab, W. and Schreiber, L. (2005). Epiphytic microorganisms on strawberry plants (Fragaria ananassa cv. elsanta): identification of bacterial isolates and analysis of their interaction with leaf surfaces. FEMS Microbiol. Ecol. 53(3):483-92. https://doi.org/10.1016/j.femsec.2005.02.004.
Kumari, A. and Kumar, R. (2018). Screening of Epiphytic isolates from different crops for plant growth promoting traits. Int. J. Curr. Microbiol. App. Sci. 7(4):1057-1064. https://doi.org/10.20546/ijcmas.2018.704.116.
Kwak, M.J., Jeong, H., Madhaiyan, M., Lee, Y., Sa, T.M., Oh, T.K. and Kim, J.F. (2014). Genome information of Methylobacterium oryzae, a plant-probiotic methylotroph in the phyllosphere. PloS One. 9(9):e106704. https://doi.org/10.1371/journal.pone.0106704.
Laothawornkitkul, J., Taylor, J.E., Paul, N.D. and Hewitt, C.N. (2009). Biogenic volatile organic compounds in the Earth system. New Phytol. 183(1):27-51. https://doi.org/10.1111/j.1469-8137.2009.02859.x.
Lindow, S.E. and Brandl, M.T. (2003). Microbiology of the phyllosphere. Appl. Environ. Microbiol. 69(4):1875-83. https://doi.org/10.1128/AEM.69.4.1875-1883.2003.
Madhaiyan, M., Alex, T.H.H., Ngoh, S.T., Prithiviraj, B. and Ji, L. (2015). Leaf-residing Methylobacterium species fix nitrogen and promote biomass and seed production in Jatropha curcas. Biotechnol. Biofuels. 8:1-14. https://doi.org/10.1186/s13068-015-0404-y.
Madhaiyan, M., Poonguzhali, S., Lee, H.S., Hari, K., Sundaram, S.P., and Sa, T.M., (2005). Pink-pigmented facultative methylotrophic bacteria accelerate germination, growth and yield of sugarcane clone CO 86032 (Saccharum officinarum L.). Biol. Fertil. Soils. 41:350. https://doi.org/10.1007/s00374-005-0838-7.
Madhaiyan, M., Suresh Reddy, B. V., Anandham, R., Senthilkumar, M., Poonguzhali, S., Sundaram, S.P., and Sa, T. (2006). Plant growth-promoting methylobacterium induces defense responses in groundnut (Arachis hypogaea L.) compared with rot pathogens. Curr. Microbiol. 53:270. https://doi.org/10.1007/s00284-005-0452-9.
Maheshwari, P., Gayathry, G. Murali Sankar, P. Sangeetha, P. and Anandraj. P. (2022). Mass multiplication and production cost analysis of phosphate solubilising microorganisms Industrial Microbiology Based Entrepreneurship. Springer. In: Amaresan, N., Dharumadurai, D., Cundell, D.R. (eds) Industrial Microbiology Based Entrepreneurship. Microorganisms for Sustainability, Springer, Singapore. 42:287-302. 978-981-19-6664-4. doi:10.1007/978-981-19-6664-4-18.
Md Gulzar, A.B. and Mazumder, P.B. (2023). Plant Growth Promoting Phyllobacteria: an Effective tool for sustainable agriculture. Russ. J. Plant Physiol. 70(8):196. https://doi.org/10.1134/S1021443723602355.
Meena, K.K., Kumar, M., Kalyuzhnaya, M.G., Yandigeri, M.S., Singh, D.P., Saxena, A.K. and Arora, D.K. (2012). Epiphytic pink-pigmented methylotrophic bacteria enhance germination and seedling growth of wheat (Triticum aestivum) by producing phytohormone. Antonie Leeuwenhoek. 101:777-786. https://doi.org/10.1007/s10482-011-9692-9.
Mondal, P., Ghosh, D., Seth, M. and Mukhopadhyay, S.K. (2024). Bioprospects of pink pigmented facultative methylotrophs (PPFMs). Arab Gulf J. Sci. Res. doi: 10.1108/AGJSR-03-2023-0127.
Nimsi, K.A., Manjusha, K., Kathiresan, K. and Arya, H. (2023). Plant growth-promoting yeasts (PGPY), the latest entrant for use in sustainable agriculture: a review. J. Appl. Microbiol. 134(2):lxac088. https://doi.org/10.1093/jambio/lxac088.
Padgurschi, M.C., Vieira, S.A., Stefani, E.J., Nardoto, G.B. and Joly, C.A. (2018). Nitrogen input by bamboos in neotropical forest: a new perspective. Peer J. 6:e6024. https://doi.org/10.7717/peerj.6024.
Rico, L., Ogaya, R., Terradas, J. and Penuelas, J. (2014). Community structures of N2‐fixing bacteria associated with the phyllosphere of a Holm oak forest and their response to drought. Plant Biol. 16(3), 586-593. https://doi.org/10.1111/plb.12082.
Saikia, S. (2024). Unravelling detailed insights on Phylloplane Bacteria: A Review. Agric. Rev. 45(1), 75-81. doi: 10.18805/ag.R-2321.
Senthilkumar, A., Saliha, B. B., Pandian, P. S., and Thamizh, R. (2022). Growth and yield response of maize (Zea mays L.) to foliar spray of NPK (19: 19: 19), PPFM, micronutrient mixture under deficit and excess water conditions. Pharma Innovation. 11(8):1140-1143.
Sharath, S., Triveni, S., Nagaraju, Y., Latha, P.C., and Vidyasagar, B. (2021). The role of phyllosphere bacteria in improving cotton growth and yield under drought conditions, Front. Agron. 3. https://doi.org/10.3389/fagro.2021.680466.
Sivakumar, N., Sathishkumar, R., Selvakumar, G., Shyamkumar, R. and Arjunekumar, K. (2020). Phyllospheric microbiomes: diversity, ecological significance, and biotechnological applications. Plant microbiomes for sustainable agriculture. 113-72. https://doi.org/10.1007/978-3-030-38453-1-5.
Sohrabi, R., Paasch, B.C., Liber, J.A. and He, S.Y. (2023). Phyllosphere microbiome. Annu. Rev. Plant Biol. 74,539-68. https://doi.org/10.1146/annurev-arplant-102820-032704.
Solanki, J.P., Vyas, R.V., Jhala, Y.K. and Patel, H.K. (2024). Development of Pink Pigmented Facultative Methylotrophs (PPFMs) consortium formulation and its efficacy on Chilli (Capsicum annuum). J. Adv. Microbiol. 24(3),1-7. doi:10.9734/jamb/2024/v24i3801.
Tamnanloo, F., Damen, H., Jangra, R. and Lee, J.S. (2018). MAP Kinase Phosphatase controls cell fate transition during stomatal development. Plant Physiol. 178(1),247-257. doi:10.1104/pp.18.00475.
Undugoda, L.J.S., Kannangara, S. and Sirisena, D.M. (2016). Genetic basis of naphthalene and phenanthrene degradation by phyllosphere bacterial strains Alcaligenes faecalis and Alcaligenes sp. 11SO. J. Bioremediat. Biodegrad. 7(2), http://dx.doi.org/10.4172/2155-6199.1000312.
Van der Wal, A. and Leveau, J.H. (2011). Modelling sugar diffusion across plant leaf cuticles: the effect of free water on substrate availability to phyllosphere bacteria. Environ. Microbiol. 13(3),792-7. https://doi.org/10.1111/j.1462-2920.2010.02382.x.
Whipps, J., Hand, P., Pink, D. and Bending, G.D. (2008). Phyllosphere microbiology with special reference to diversity and plant genotype. J. Appl. Microbiol. 105(6),1744-55. https://doi.org/10.1111/j.1365-2672.2008.03906.x.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Gayathry G, Sabarinathan KG , Jayalakshmi T
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.