Water Logging Affect Tissue Protein, Lipid Peroxidation and Enzyme Activities in the Epigeic Earthworm Eudrilus eugeniae (Kinberg)

Authors

  • C S K Mishra Odisha University of Agriculture and Technology
  • Suryasikha Samal
  • Pratik Acharya Odisha University of Agriculture and Technology

DOI:

https://doi.org/10.55863/ijees.2024.3092

Keywords:

Hypoxia, earthworm, survivability, oxidative stress, biomarker, antioxidant enzyme activity

Abstract

Oxygen deprivation caused due to water logging during flood could affect physiology of earthworms with significant increase in oxidative stress. This study reports the effects of short-term water logging of 12h and 24h duration with different water column heights and consequent depletion in oxygen level in water on survivability, tissue protein, lipid peroxidation (LPX) levels and activities of the enzymes, lactate dehydrogenase (LDH) and catalase (CAT) of the earthworm, Eudrilus eugeniae. The survivabilities were 30% and 15% under 5cms (T1) and 10cms (T2) water columns after 24h. With depletion of DO in the water, tissue protein of the earthworm indicated significant increase up to 12h but there after declined sharply up to 24h. Significant increase in LPX level, LDH and CAT activities were observed after 12h and 24h.The biochemical parameters of the animal showed significant variation between treatments and was found to be negatively correlated with DO of water column. It was concluded that hypoxia due to short-term waterlogging could seriously impair the metabolism and survival of earthworms.

References

Blankinship, J.C., Niklaus, P.A. and Hungate, B.A. 2011. A meta-analysis of responses of soil biota to global change. Oecologia, 165(3), 553-565. https://doi.org/10.1007/s00442-011-1909-0

Cabaud, P.G., Wróblewski, F. and With the Technical Assistance of Ruggiero, V. 1958. Colorimetric measurement of lactic dehydrogenase activity of body fluids. American Journal of Clinical Pathology, 30(3), 234-236. https://doi.org/10.1093/ajcp/30.3.234

Cohen, G., Dembiec, D. and Marcus, J. 1970. Measurement of catalase activity in tissue extracts. Analytical Biochemistry, 34(1), 30-38. https://doi.org/10.1016/0003-2697(70)90083-7

Desai, D.V. and Prakash, S. 2009. Physiological responses to hypoxia and anoxia in Balanus amphitrite (Cirripedia: Thoracica). Marine Ecology Progress Series, 390, 157-166. https://www.int-res.com/articles/meps2009/390/m390p157.pdf

Eisenhauer, N., Fisichelli, N.A., Frelich, L.E. and Reich, P.B. 2012. Interactive effects of global warming and ‘global worming’on the initial establishment of native and exotic herbaceous plant species. Oikos, 121(7), 1121-1133. https://doi.org/10.1111/j.1600-0706.2011.19807.x

Giraud-Billoud, M., Abud, M.A., Cueto, J.A., Vega, I.A. and Castro-Vazquez, A. 2011. Uric acid deposits and estivation in the invasive apple-snail, Pomacea canaliculata. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 158(4), 506-512. https://doi.org/10.1016/j.cbpa.2010.12.012

Giraud-Billoud, M., Vega, I.A., Tosi, M.E.R., Abud, M.A., Calderón, M.L. and Castro-Vazquez, A. 2013. Antioxidant and molecular chaperone defences during estivation and arousal in the South American apple snail Pomacea canaliculata. Journal of Experimental Biology, 216(4), 614-622. https://doi.org/10.1242/jeb.075655

Gómez, I., Rodríguez-Morgado, B., Parrado, J., García, C., Hernández, T. and Tejada, M. 2014. Behavior of oxyfluorfen in soils amended with different sources of organic matter. Effects on soil biology. Journal of Hazardous Materials, 273, 207-214. https://doi.org/10.1016/j.jhazmat.2014.03.051

Gorokhova, E., Löf, M., Halldórsson, H.P., Tjärnlund, U., Lindström, M., Elfwing, T. and Sundelin, B. 2010. Single and combined effects of hypoxia and contaminated sediments on the amphipod Monoporeia affinis in laboratory toxicity bioassays based on multiple biomarkers. Aquatic Toxicology, 99(2), 263-274. https://doi.org/10.1016/j.aquatox.2010.05.005

Gorokhova, E., Löf, M., Reutgard, M., Lindström, M. and Sundelin, B. 2013. Exposure to contaminants exacerbates oxidative stress in amphipod Monoporeia affinis subjected to fluctuating hypoxia. Aquatic Toxicology, 127, 46-53. https://doi.org/10.1016/j.aquatox.2012.01.022

Harrison, J., Frazier, M. R., Henry, J. R., Kaiser, A., Klok, C. J. and Rascón, B. 2006. Responses of terrestrial insects to hypoxia or hyperoxia. Respiratory Physiology & Neurobiology, 154(1-2), 4-17. https://doi.org/10.1016/j.resp.2006.02.008

Hermes-Lima, M. and Storey, K.B. 1993. Antioxidant defenses in the tolerance of freezing and anoxia by garter snakes. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 265(3), R646-R652. https://doi.org/10.1152/ajpregu.1993.265.3.R646

Hermes-Lima, M., Moreira, D.C., Rivera-Ingraham, G.A., Giraud-Billoud, M., Genaro-Mattos, T.C. and Campos, É.G. 2015. Preparation for oxidative stress under hypoxia and metabolic depression: revisiting the proposal two decades later. Free Radical Biology and Medicine, 89, 1122-1143. https://doi.org/10.1016/j.freeradbiomed.2015.07.156

Hoback, W.W. and Stanley, D.W. 2001. Insects in hypoxia. Journal of Insect Physiology, 47(6), 533-542. https://doi.org/10.1016/S0022-1910(00)00153-0

Hodkinson, I.D. and Bird, J. M. 2004. Anoxia tolerance in high Arctic terrestrial microarthropods. Ecological Entomology, 29(4), 506-509. https://doi.org/10.1111/j.0307-6946.2004.00619.x

Ivask, M., Meriste, M., Kuu, A., Kutti, S. and Sizov, E. 2012. Effect of flooding by fresh and brackish water on earthworm communities along Matsalu Bay and the Kasari River. European Journal of Soil Biology, 53, 11-15. https://doi.org/10.1016/j.ejsobi.2012.08.001

Kiss, T. (2019). Earthworms, Flooding, and Sewage Sludge. Doctoral dissertation, University of York.

Kiss, B.W., Chen, X., Ponting, J., Sizmur, T. and Hodson, M.E. 2021. Dual stresses of flooding and agricultural land use reduce earthworm populations more than the individual stressors, Science of the Total Environment, 754, 142102. https://doi.org/10.1016/j.scitotenv.2020.142102.

Kiss, T.B., Chen, X. and Hodson, M.E. 2021. Interspecies variation in survival of soil fauna in flooded soil. Applied Soil Ecology, 158, 103787. https://doi.org/10.1016/j.apsoil.2020.103787

López-Martínez, G. and Hahn, D.A. 2012. Short-term anoxic conditioning hormesis boosts antioxidant defenses, lowers oxidative damage following irradiation and enhances male sexual performance in the Caribbean fruit fly, Anastrepha suspensa. Journal of Experimental Biology, 215(12), 2150-2161. https://doi.org/10.1242/jeb.065631

Lowry, O.H., Rosebrough, N.J., Farr, A.L. and Randall, R.J. 1951. Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193(1), 265-275. https://doi.org/10.1016/S0021-9258(19)52451-6

Lushchak, V.I., Bagnyukova, T.V., Lushchak, V., Storey, J.M. and Storey, K.B. 2005. Hypoxia and recovery perturb free radical processes and antioxidant potential in common carp (Cyprinus carpio) tissues. The International Journal of Biochemistry & Cell Biology, 37(6), 1319-1330. https://doi.org/10.1016/j.biocel.2005.01.006

Lushchak, V.I., Lushchak, L.P., Mota, A.A. and Hermes-Lima, M. 2001. Oxidative stress and antioxidant defenses in goldfish Carassius auratus during anoxia and reoxygenation. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 280(1), R100-R107. https://doi.org/10.1152/ajpregu.2001. 280.1.R100

Malthankar-Phatak, G.H., Patel, A.B., Xia, Y., Hong, S., Chowdhury, G.M., Behar, K.L., Orina, I.A. and Lai, J.C. 2008. Effects of continuous hypoxia on energy metabolism in cultured cerebro-cortical neurons. Brain Research, 1229, 147-154. https://doi.org/10.1016/j.brainres.2008.06. 074

Marti, H.H., Jung, H.H., Pfeilschifter, J. and Bauer, C. 1994. Hypoxia and cobalt stimulate lactate dehydrogenase (LDH) activity in vascular smooth muscle cells. Pflügers Archiv, 429(2), 216-222. https://doi.org/10.1007/BF00374315

Marx, M.T., Guhmann, P. and Decker, P. 2012. Adaptations and predispositions of different Middle European arthropod taxa (Collembola, Araneae, Chilopoda, Diplopoda) to flooding and drought conditions. Animals, 2(4), 564-590. https://doi.org/10.3390/ani2040564

Marx, M.T., Wild, A.K., Knollmann, U., Kamp, G., Wegener, G. and Eisenbeis, G. 2009. Responses and adaptations of collembolan communities (Hexapoda: Collembola) to flooding and hypoxic conditions. Pesquisa Agropecuária Brasileira, 44(8), 1002-1010. https://doi.org/10.1590/S0100-204X2009000800032

Mishra, C.S.K., Samal, S., Rout, A., Pattanayak, A. and Acharya, P. 2020. Evaluating the implications of moisture deprivation on certain biochemical parameters of the earthworm Eudrilus eugeniae with microbial population and exoenzyme activities of the organic substrate. Invertebrate Survival Journal, 17, 1-8. https://doi.org/10.25431/1824-307X/isj.v0i0.1-8

Mishra, C.S.K., Nayak, S. and Samal, S. 2019. Low intensity light effects on survivability, biomass, tissue protein and enzyme activities of the earthworm Eudrilus eugeniae (Kinberg). Invertebrate Survival Journal, 16, 8-14. https://doi.org/10.25431/1824-307X/isj.v0i0.8-14

Ohkawa, H., Ohishi, N. and Yagi, K. 1979. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry, 95(2), 351-358. https://doi.org/10.1016/0003-2697(79)90738-3

Oliveira, U.O., Bello-Klein, A. and Kucharski, L.C. 2006. Oxidative balance and immunodetection of antioxidant enzymes in the hepatopancreas of the crab Chasmagnathus granulata subjected to anoxia and reoxygenation. Canadian Journal of Zoology, 84(5), 677-684. https://doi.org/10.1139/z06-041

Oliveira, U.O., da Rosa Araújo, A.S., Belló-Klein, A., da Silva, R.S. and Kucharski, L.C. 2005. Effects of environmental anoxia and different periods of reoxygenation on oxidative balance in gills of the estuarine crab Chasmagnathus granulata. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 140(1), 51-57. https://doi.org/10.1016/j.cbpc.2004.09.026

Pannunzio, T.M. and Storey, K.B. 1998. Antioxidant defenses and lipid peroxidation during anoxia stress and aerobic recovery in the marine gastropod Littorina littorea. Journal of Experimental Marine Biology and Ecology, 221(2), 277-292. https://doi.org/10.1016/S0022-0981(97)00132-9

Pérez-Jiménez, A., Peres, H., Rubio, V.C. and Oliva-Teles, A. 2012. The effect of hypoxia on intermediary metabolism and oxidative status in gilthead sea bream (Sparus aurata) fed on diets supplemented with methionine and white tea. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 155(3), 506-516. https://doi.org/10.1016/j.cbpc.2011.12.005

Plum, N. 2005. Terrestrial invertebrates in flooded grassland: a literature review. Wetlands, 25(3), 721. https://doi.org/10.1672/0277-5212(2005)025[0721:TIIFGA] 2.0.CO;2

Plum, N.M. and Filser, J. 2005. Floods and drought: Response of earthworms and potworms (Oligochaeta: Lumbricidae, Enchytraeidae) to hydrological extremes in wet grassland. Pedobiologia, 49(5), 443-453. https://doi.org/10.1016/j.pedobi.2005.05.004

Ponnamperuma, F.N. 1984. Effects of flooding on soils. Pp. 9-45. In: Kozlowski, T.T. (Ed.) Physiological Ecology, Flooding and Plant Growth, Academic Press, https://doi.org/10.1016/B978-0-12-424120-6.50007-9

Pörtner, H.O. and Grieshaber, M.K. 1993. Critical PO2 (s) in oxyconforming and oxyregulating animals gas exchange, metabolic rate and the mode of energy production. pp. 330-357. In: Bicudo, J.E.P.W. (Ed.) The Vertebrate Gas Transport Cascade Adaptations to Environment and Mode of Life. CRC Press, Boca Raton FL. https://epic.awi.de/id/eprint/2446/1/Poe1993b.pdf

Portner, H.O., Bock, C. and Reipschlager, A. 2000. Modulation of the cost of pHi regulation during metabolic depression: a (31) P-NMR study in invertebrate (Sipunculus nudus) isolated muscle. Journal of Experimental Biology, 203(16), 2417-2428. http://doi.org/ 10.1242/jeb.203.16. 2417

Pörtner, H.O., Langenbuch, M. and Michaelidis, B. 2005. Synergistic effects of temperature extremes, hypoxia, and increases in CO2 on marine animals: From earth history to global change. Journal of Geophysical Research: Oceans, 110, C09S10. https://doi.org/10.1029/2004JC002561

Pörtner, H.O., Reipschläger, A. and Heisler, N. 1998. Acid-base regulation, metabolism and energetics in Sipunculus nudus as a function of ambient carbon dioxide level. Journal of Experimental Biology, 201(1), 43-55. https://doi.org/10.1242/jeb.201.1.4

Preedy, V.R., Smith, D.M. and Sugden, P.H. 1985. The effects of 6 hours of hypoxia on protein synthesis in rat tissues in vivo and in vitro. The Biochemical Journal, 228(1), 179-185. https://doi.org/10.1042/bj2280179

Reipschlager, A., Nilsson, G.E. and Portner, H.O. 1997. A role for adenosine in metabolic depression in the marine invertebrate Sipunculus nudus. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 272(1), R350-R356. https:/doi.org/10.1152/ajpregu.1997. 272.1.R350

Singh, J., Schädler, M., Demetrio, W., Brown, G.G. and Eisenhauer, N. 2019. Climate change effects on earthworms-a review. Soil Organisms, 91(3), 114. https://doi.org/10.25674/so91iss3pp114

Singh, S., Singh, J. and Vig, A.P. 2016. Effect of abiotic factors on the distribution of earthworms in different land use patterns. The Journal of Basic & Applied Zoology, 74, 41-50. https://doi.org/10.1016/j.jobaz.2016.06.001

Sorensen, B.S., Busk, M., Overgaard, J., Horsman, M.R. and Alsner, J. 2015. Simultaneous hypoxia and low extracellular pH suppress overall metabolic rate and protein synthesis in vitro. PloS one, 10(8), 1-14. https://doi.org/10.1371/journal.pone.0134955

Steckbauer, A., Ramajo, L., Hendriks, I.E., Fernandez, M., Lagos, N., Prado, L. and Duarte, C.M. 2015. Synergistic effects of hypoxia and increasing CO2 on benthic invertebrates of the central Chilean coast. Frontiers in Marine Science, 2, 49. https://doi.org/10.3389/fmars.2015.00049

Storey, K.B. and Wu, C.W. 2013. Stress response and adaptation: a new molecular toolkit for the 21st century. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 165(4), 417-428. https://doi.org/10.1016/j.cbpa.2013.01.019

Thakur, M.P., Reich, P.B., Hobbie, S.E., Stefanski, A., Rich, R., Rice, K.E., Eddy, E.C. and Eisenhauer, N. 2018. Reduced feeding activity of soil detritivores under warmer and drier conditions. Nature Climate Change, 8(1), 75-78. https://doi.org/10.1038/s41558-017-0032-6

Turrens, J.F. 2003. Mitochondrial formation of reactive oxygen species. The Journal of Physiology, 552(2), 335-344. https://doi.org/10.1113/jphysio.2003.049478

Wall, D.H., Nielsen, U.N. and Six, J. 2015. Soil biodiversity and human health. Nature, 528(7580), 69-76. https://doi.org/10.1038/nature15744

Wegener, G. 1993. Hypoxia and posthypoxic recovery in insects: physiological and metabolic aspects. Pp. 417-434. In: Hochachka, P.W., Lutz, P.L., Sick, T.J. and Rosenthal, M. (Eds.) Surviving Hypoxia: Mechanisms of Control and Adaptation, CRC Press, Boca Raton.

Welker, A.F., Moreira, D.C., Campos, É.G. and Hermes-Lima, M. 2013. Role of redox metabolism for adaptation of aquatic animals to drastic changes in oxygen availability. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 165(4), 384-404. https://doi.org/10.1016/j.cbpa.2013.04.003

Woo, S., Denis, V., Won, H., Shin, K., Lee, G., Lee, T.K. and Yum, S. 2013. Expressions of oxidative stress-related genes and antioxidant enzyme activities in Mytilus galloprovincialis (Bivalvia, Mollusca) exposed to hypoxia. Zoological Studies, 52(1), 15. https://doi.org/10.1186/1810-522X-52-15

Zorn, M.I., Van Gestel, C.A.M., Morrien, E., Wagenaar, M. and Eijsackers, H. 2008. Flooding responses of three earthworm species, Allolobophora chlorotica, Aporrectodea caliginosa and Lumbricus rubellus, in a laboratory-controlled environment. Soil Biology and Biochemistry, 40(3), 587-593. https://doi.org/10.1016/j.soilbio.2007.06.028

Downloads

Published

2023-12-26

How to Cite

Mishra, C. S. K., Samal, S., & Acharya, P. (2023). Water Logging Affect Tissue Protein, Lipid Peroxidation and Enzyme Activities in the Epigeic Earthworm Eudrilus eugeniae (Kinberg). International Journal of Ecology and Environmental Sciences, 50(1), 97–105. https://doi.org/10.55863/ijees.2024.3092