Exploring the Multifaceted Benefits of Azolla: A Comprehensive Review of an Aquatic Fern’s Biological and Practical Contributions

Authors

DOI:

https://doi.org/10.55863/ijees.2024.0264

Keywords:

Azolla, cyanobacterium, salviniaceae, pteridophyte, sustainability

Abstract

Azolla, also known as “green gold” or “super plant,” is a nitrogen-fixing pteridophyte found in temperate and tropical freshwater ecosystems. This free-floating aquatic fern, native to Asia, Africa, and the Americas, thrives in diverse aquatic habitats, including swamps, ditches, lakes, and shallow rivers. It generates full biomass in a relatively short period of time. It acts as a nitrogen biofertilizer and boosts rice productivity. Beyond its role in agriculture, Azolla serves as a versatile resource, finding applications in livestock feed, human nutrition, hydrogen fuel production, biogas generation, pest control, and water purification. Notably, Azolla exhibits hyperaccumulation capabilities for various heavy metal contaminants and can effectively absorb ammonium and phosphorous from wastewater. Moreover, it possesses antimicrobial properties and a rich array of phytochemical compounds, promising multifaceted benefits in diverse fields. This review highlights the vast potential of Azolla, emphasizing its suitability for extensive research and development in food, feed, and fodder applications, as well as household cultivation and utilization. To fully harness the myriad advantages offered by Azolla and promote sustainability across various sectors, further exploration and investigation into its untapped applications remain imperative. Azolla holds the key to addressing numerous environmental, agricultural, and industrial challenges, paving the way for a more sustainable and resource-efficient future.

References

Abraham, G. 2013. Evaluation of antimicrobial activity of methanolic extracts of Azolla microphylla. Vegetos, 26(1), 200-204. https://doi.org/10.5958/J.2229-4473.26.1.029

Adams, D.G., Duggan, P.S. and Jackson, O. 2012. Cyanobacterial symbioses. Pp. 593–564. In: Whitton, B.A. (Ed.). Ecology of Cyanobacteria II: Their diversity in space and time. Springer science business media, BV.

Agamuthu, P., Abioye, O.P. and Aziz, A.A. 2010. Phytoremediation of soil contaminated with used lubricating oil using Jatropha curcas. Journal of Hazardous Materials, 179(1-3), 891-894. https://doi.org/10.1016/j.jhazmat.2010.03.088

Ahmed, H.A., Ganai, A.M. and Beigh, Y.A. 2016. Performance of growing sheep on Azolla based diets. Indian Journal of Animal Research, 50, 721-724. https://doi.org/10.18805/ijar.9642.

Ali, H., Khan, E. and Sajad, M.A. 2013. Phytoremediation of heavy metals - Concepts and applications. Chemosphere, 91(7), 869-881. https://doi.org/10.1016/j.chemosphere.2013.01.075.

Ammar, A.A.A. and Taha, N.T. 2020. Effect of use of the Azolla plant instead partial for soybean meal in the ration of common carp fish Cyprinus carpio L. in some production standards. Plant Archives, 20(2), 5177-5185. https://doi.org/10.13140/RG.2.2.32337.35686

Anonymous. 1985. Propagation and agricultural use of Azolla in Vietnam. FAO-AGPIRC/85/7(bl). FAO, Rome, Italy. 16 pages.

Arora, A., Sexana, S. and Sharma, D.K. 2006. Tolerance of phyto-accumulation of chromium by three Azolla species. World Journal of Microbiology and Biotechnology, 22, 97-100. https://doi.org/10.1007/s11274-005-9000-9.

Arora, M. and Kaur, A. 2019. Azolla pinnata, Aspergillus terreus and Eisenia fetida for enhancing agronomic value of paddy straw. Scientific Reports, 9(1), 1341. https://doi.org/10.1038/s41598-018-37880-1.

Asim, R., Khan, M.S., Saeed, M., Kamboh, A.A., Khan, R.U., Farooq, Z., Imran, S., Farid, M.U. and Farid, M.U. 2022. Importance of Azolla plant in poultry production. World’s Poultry Science Journal, 78(3), 789-802. https://doi.org/10.1080/00439339.2022.2054752.

Azolla Foundation. 2014. The Azolla Foundation. Retrieved from http://theazollafoundation.org/azolla/azollas-use-in-the-east/.

Banach, A.M., Kuzniar, A., Grządziel, J. and Wolinska, A. 2020. Azolla filiculoides L. as a source of metal-tolerant microorganisms. PLoS ONE, 15(5), e0232699. https://doi.org/10.1371/journal.pone.0232699.

Baolin, L. 1987. Environmental management for the control of rice field-breeding mosquitoes in China. Pp. 111–121. In: Vector-borne disease control in humans through rice agroecosystem management. Proceedings of the research and training needs in the field of integrated vector-borne disease control in rice land agroecosystems of developing countries. March 9–14, (ed. IRR Institute). International Rice Research Institute in collaboration with the WHO/FAO/UNEP Panel of Experts on Environmental Management for Vector Control, Manila, Philippines.

Bottomley, B. 1920. The effect of organic matter on the growth of various plants in culture solutions. Annals of Botany, 39, 353-365.

Brouwer, P., Brautigam, A., Kulahoglu, C., Tazelaar, A.O.E., Kurz, S., Nierop, K.G.J., van der Werf, A., Weber, A.P.M. and Schluepmann, H. 2014. Azolla domestication towards a biobased economy. New Phytologist, 202(3), 1069-1082. https://doi.org/10.1111/nph.12708.

Brouwer, P., Schluepmann, H., Nierop, K.G., Elderson, J., Bijl, P.K., van der Meer, I., de Visser., W., Reichart, G.J., Smeekens, S. and van der Werf, A. 2018. Growing Azolla to produce sustainable protein feed: the effect of differing species and CO2 concentrations on biomass productivity and chemical composition. Journal of the Science of Food and Agriculture, 98(12), 4759-4768. https://doi.org/10.1002/jsfa.9016.

Carrapico, F. 2010. Azolla as a superorganism. Its implication in symbiotic studies. pp. 225-242. In: Symbioses and Stress. Seckbach, J. and Grube, M. (Eds) Symbioses and Stress: Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 17. Springer, Dordrecht.https://doi.org/10.1007/978-90-481-9449-0_11.

Chichilichi, B., Mohanty, G.P., Mishra, S.K., Pradhan, C.R., Behura, N.C., Das, A. and Behera, K. 2015. Effect of partial supplementation of sun-dried Azolla as a protein source on the immunity and antioxidant status of commercial broilers. Veterinary World, 8(9), 1126-1130. https://doi.org/10.14202/vetworld.2015.1126-1130.

Das, M., Rahim, F.I. and Hossain, M.A. 2018. Evaluation of fresh Azolla pinnata as a low-cost supplemental feed for Thai silver Barb Barbonymus gonionotus. Fishes, 3(1), 15. https://doi.org/10.3390/fishes3010015

Dijkhuizen, L.W., Brouwer, P., Bolhuis, H., Reichart, G.J., Koppers, N., Huettel, B., Bolger, A.M., Li, F.W., Cheng, S., Liu, X. and Wong, G.K.S. 2021. Red light-induced Azolla filiculoides symbiosis sexual reproduction: Responsive transcripts of symbiont Nostoc azollae encode transporters whilst those of the fern relate to the angiosperm floral transition. Frontiers in Plant Science, 12, 693039. https://doi.org/10.3389/fpls.2021.693039.

Ekawati, E.R. and Pradana, M.S. 2019. The effectiveness of Azolla pinnata in inhibiting the growth of Salmonella typhi. Jurnal Biota, (1), 1-5. https://doi.org/10.19109/Biota.v5i1.2696.

El-Daim, A., Asely, M., Kandiel, A., El-Gawad, H., Elabd, A.S. and Abbass, A. 2021. Effect of Spirulina platensis and Azolla nilotica as feed additives on growth performance, antioxidant enzymes and fecundity of Oreochromis niloticus. Iranian Journal of Fisheries Sciences, 20(3), 846-862. http://www.agrijournals.ir/article_124136.html

Evrard, C. and van Hove, C. 2004. Taxonomy of the American Azolla species (Azollaceae): A critical review. Systematics and Geography of Plants, 74, 301-318. https://doi.org/10.2307/3668500.

Gates, J.E., Fisher, E.W. and Candler, R.A. 1980. The occurrence of the Coryneform bacteria in the leaf cavity of Azolla. Archives of Microbiology, 127, 163-165. https://doi.org/10.1007/BF00428020.

Golzary, A., Tavakoli, O., Rezaei, Y. and Karbassi, A. 2018. Wastewater treatment by Azolla filiculoides: A study on color, odor, COD, nitrate, and phosphate removal. Pollution, 4 (1), 69-79. https://doi.org/ 10.22059/POLL.2017.236692.290.

Herath, B.M., Yapa, N. and Karunarathna, S. 2023. Azolla as the multifunctional fern in organic agriculture: Prospects and challenges. International Journal of Agricultural Technology, 19, 63-82.

Hossain, M.B., Mian, M.H., Hashem, M.A., Islam, M.Z. and Shamsuddoha, A.T.M. 2001. Use of Azolla as biofertilizer for cultivation of BR26 Rice in Aus season. Journal of Biological Sciences, 1(12), 1120-1123. https://doi.org/10.3923/jbs.2001.1120.1123

Imron, M.F., Kurniawan, S.B., Soegianto, A. and Wahyudianto, F.E. 2019. Phytoremediation of methylene blue using duckweed (Lemna minor). Heliyon, 5(8), e02206. https://doi.org/10.1016/j.heliyon.2019.e02206.

Indira, D., Rao, K.S. and Suresh, J. 2009. Azolla (Azolla pinnata) as feed supplement in buffalo calves on growth performance. Indian Journal of Animal Nutrition, 26, 345-348.

Israa, A.A.B. 2018. Removal of 1,2-Dichloroethane from real industrial wastewater using a sub-surface batch system with Typha angustifolia L. Ecotoxicology and Environmental Safety, 147, 260-265. https://doi.org/10.1016/j.ecoenv.2017.08.022

Jayasundara, P. 2022. Wastewater treatment by Azolla: A review. Diyala Agricultural Sciences Journal, 14(1), 40-46. https://doi.org/10.52951/dasj.22140105.

Korsa, G., Alemu, D. and Ayele, A. 2024. Azolla plant production and their potential applications. International Journal of Agronomy, 12. https://doi.org/10.1155/2024/1716440.

Kumar, A.S., Murugesan, S.V.M. and Balamurugan, P. 2020. Feeding of Azolla as a green fodder feed supplement on productive performance and milk composition of crossbred dairy cows in Theni District of Tamil Nadu, India. International Journal of Current Microbiology and Applied Science, 9(6), 1388-1392. https://doi.org/10.20546/ijcmas.2020.906.171

Liu, J., Xu, H., Jiang, Y., Zhang, K., Hu, Y. and Zeng, Z. 2017. Methane emissions and microbial communities as influenced by dual cropping of Azolla along with early rice. Scientific Reports, 7, 40635. https://doi.org/10.1038/srep40635.

Liu, X., Min, C., Xia-Shi, L. and Chungchu, L. 2008. Research on some functions of Azolla in CELSS system. Acta Astronautica, 63(7), 1061-1066. https://doi.org/10.1016/j.actaastro.2008.03.001.

Lu, X.M. and Lu, P.Z. 2018. Response of microbial communities to pesticide residues in soil restored with Azolla imbricata. Applied Microbiology and Biotechnology, 102(1), 475-484. https://doi.org/10.1007/s00253-017-8596-7.

Lumpkin, T.A. and Plucknett, D.L. 1982. Azolla as a green manure: Use and Management. Westview Press, USA. 230 pages.

Lumsangkul, C., Vu Linh, N.V., Chaiwan, F., Abdel-Tawwab, M., Dawood, M.A.O., Faggio, C., Jaturasitha, S. and van Doan, H. 2022. Dietary treatment of Nile tilapia (Oreochromis niloticus) with aquatic fern (Azolla caroliniana) improves growth performance, immunological response, and disease resistance against Streptococcus agalactiae cultured in bio-floc system. Aquaculture Reports, 24, 101114. https://doi.org/10.1016/j.aqrep.2022.101114.

Macale, M.A.R. and Vlek, P.L.G.2004. The role of Azolla cover in improving the nitrogen use efficiency of lowland rice. Plant and Soil, 263(1), 311-321. https://doi.org/10.1023/B:PLSO.0000047742.67467.50.

Marzouk, S.H., Tindwa, H.J., Amuri, N.A. and Semoka, J.M. 2023. An overview of underutilized benefits derived from Azolla as a promising biofertilizer in lowland rice production. Heliyon, 9(1), e13040. https://doi.org/10.1016/j.heliyon.2023.e13040.

Mathur, G.N., Ramakant, S. and Choudhary, P.C. 2013. Use of Azolla (Azolla pinnata) as cattle feed supplement. Journal of Krishi Vigyan, 2(1),7375. https://www.indianjournals.com/ijor.aspx?target=ijor:jkv&volume=2&issue=1&article=018&type=pdf

Miranda, A.F., Liu, Z.Q., Rochfort, S. and Mouradov, A. 2018. Lipid production in aquatic plant Azolla at vegetative and reproductive stages and in response to abiotic stress. Plant Physiology and Biochemistry. 124. https://doi.org/10.1016/j.plaphy.2018.01.012.

Miranda, A.F., Biswas, B., Ramkumar, N., Singh, R., Kumar, J., James, A., Roddick, F., Lal, B., Subudhi, S., Bhaskar, T. and Mouradov, A. 2016. Aquatic plant Azolla as the universal feedstock for biofuel production. Biotechnology for Biofuels, 9(9), 221. https://doi.org/10.1186/s13068-016-0628-5.

Mosha, S.S. 2018. A review on significance of Azolla meal as a protein plant source in finfish culture. Journal of Aquaculture Research and Development, 9(7), 544. https://doi.org/10.4172/2155-9546.1000544.

Mwingira, V.S., Mayala, B., Senkoro, K., Rumisha, S., Susan, F.R., Shayo, H.E., Mlozi, M.R.S. and Mboera, L. 2009. Mosquito larval productivity in rice-fields infested with Azolla in Mvomero District, Tanzania. Tanzania Journal of Health Research, 11, 17-22. https://doi.org/10.4314/thrb.v11i1.43246.

Nagalingum, N.S., Schneider, H. and Pryer, K.M. 2006. Comparative morphology of reproductive structures in heterosporous water ferns and a re-evaluation of the sporocarp. International Journal of Plant Science, 167, 805-815. https://doi.org/10.1086/503848.

Newton, J.W. and Herman, A.I. 1979. Isolation of cyanobacteria from the aquatic fern, Azolla. Archives of Microbiology, 120 (2), 161-165. https://doi.org/10.1007/BF00409103.

Parthasarathy, R., Kadirvel, R. and Kathaperumal, V. 2002. Azolla as a partial replacement for fish meal in broiler rations. Indian Veterinary Journal, 79(2), 144-146.

Pereira, A. L., Lucinda, J. B., Pedro, L., Vasconcelos, V. and Martins da Costa P. 2015. Bioactivity of Azolla aqueous and organic extracts against bacteria and fungi. Symbiosis, 65, 10. https://doi.org/10.1007/s13199-015-0316-4.

Peters, G. and Meeks, J. 1989. The Azolla-anabaena symbiosis: basic biology. Annual Review of Plant Physiology and Plant Molecular Biology, 40(1), 193-210. https://doi.org/10.1146/annurev.pp.40.060189.001205.

Peters, G.A., Toia, R.E., Jr Raveed, D. and Levine, N.J. 1978. The Azolla-Anabaena azollae relationship. VI. Morphological aspects of the association. New Phytologist, 80(3), 583-593. https://doi.org/10.1111/j.1469-8137.1978.tb01591.x.

Petro, M.J. and Gates, J.E. 1987. Distribution of Arthrobacter sp. in the leaf cavities of four species of 29 the N-fixing Azolla fern. Symbiosis, 3, 41-48.

Piccardi, R., Frosini, A., Tredici, M.R. and Margheri, M.C. 2000. Bioactivity in free-living and symbiotic cyanobacteria of the genus Nostoc. Journal of Applied Phycology, 12(3/5), 543-547. https://doi.org/10.1023/A:1008106715148

Pillai, K.P., Premalatha, S. and Rajamony, S. 2002. Azolla – A sustainable feed substitute for livestock. Leisa India, 4, 15-17.

Prashith, K.T.R. 2014. Anticaries activity of Azolla pinnata and Azolla rubra. Science. Technology and Arts Research Journal, 3(3), 119121. https://doi.org/10.4314/star.v3i3.21.

Pratte, B.S. and Thiel, T. 2021. Comparative genomic insights into culturable symbiotic cyanobacteria from the water fern Azolla. Microbial Genomes, 7(6), 000595. https://doi.org/10.1099/mgen.0.000595.

Rahmah, S., Nasrah, U., Lim, L.S., Ishak, S.D., Rozaini, M.Z.H. and Liew, H.J. 2022. Aquaculture wastewater-raised Azolla as partial alternative dietary protein for Pangasius catfish. Environmental Research, 208, 112718. https://doi.org/10.1016/j.envres.2022.112718.

Raja, W., Rathaur, P., John, S.A. and Ramteke, P.W. 2012. Azolla-Anabaena association and its significance in supportable agriculture. Journal Biology and Chemistry, 40(1), 1-6. https://dergipark.org.tr/en/pub/hjbc/issue/61880/926016

Ran, L., Larsson, J., Vigil-Stenman, T., Nylander, J.A., Ininbergs, K., Zheng, W.W., Lapidus, A., Lowry, S., Haselkorn, R. and Bergman, B. 2010. Genome erosion in a nitrogen-fixing vertically transmitted endosymbiotic multicellular cyanobacterium. PLoS ONE, 5(7), e11486. https://doi.org/10.1371/journal.pone.0011486

Ravi, R., Zulkrnin, N.S.H., Rozhan, N.N., Nik Yusoff, N.R., Mat Rasat, M.S. and Ahmad, M.I. 2018. Chemical composition and larvicidal activities of Azolla pinnata extracts against Aedes (Diptera:Culicidae). PLoS ONE, 13(11), e0206982. https://doi.org/10.1371/journal.pone.0206982.

Refaey, M.M., Mehrim, A.I., Zenhom, O.A., Areda, H.A., Ragaza, J.A. and Hassaan, M.S. 2023. Fresh Azolla, Azolla pinnata as a Complementary Feed for Oreochromis niloticus: Growth, digestive Enzymes, intestinal Morphology, Physiological Responses, and Flesh Quality. Aquaculture Nutrition, 14(03), 704. https://doi.org/10.1155/2023/1403704.

Sarkar, A., Bhakta, J.N. and Bhakta, B.O.K. 2023. Evaluating growth-dependent enhanced carbon dioxide sequestration potential of Azolla pinnata using cattle wastes (cow dung and cow urine). Heliyon, 9(3), e14610. https://doi.org/10.1016/j.heliyon.2023.e14610.

Sathammaipriya, N., Thamilmaraiselvi, B., Steffi, P.F. and Sangeetha, K. 2018. Investigation of phytochemical constituents in Azolla microphylla for antibacterial activity. National Journal of Physiology, Pharmacy and Pharmacology, 8(9), 1500-1504. https://doi.org/10.5455/njppp.2018.8.0310430072018.

Sathish, S.S., Supriya, P., Andal, D., Prabu, J., Aravind Kumar, M., Rajasimman, Sabah, A. and Shahabaldin, R. 2022. Effective utilization of Azolla filiculoides for biodiesel generation using graphene oxide nano catalyst derived from agro-waste. Fuel, 329. 125412.https://doi.org/10.1016/j.fuel.2022.125412.

Shi, D.J. and Hall, D.O. 1988. The Azolla-Anabaena association: Historical perspective, symbiosis and energy metabolism. Botanical Review, 54(4), 353-386. https://doi.org/10.1007/BF02858416.

Shukla, M., Bhattacharyya, A., Shukla, P.K., Roy, D., Yadav, B. and Sirohi, R.2018. Effect of Azolla feeding on the growth, feed conversion ratio, blood biochemical attributes and immune competence traits of growing turkeys. Veterinary World, 11(4), 459-463. https://doi.org/10.14202/vetworld.2018.459-463.

Sihag, S., Sihag, S.Z., Kumar, S. and Singh, N. 2018. Effect of feeding Azolla (Azolla pinnata) based total mixed ration on growth performance and nutrients utilization in goats. Forage Research, 43, 314-318.

Si-Ping, Z., Bin, C., Xiong, G. and Wei-Wen, Z. 2008. Diversity analysis of endophytic bacteria within Azolla microphylla using PCR-DGGE and electron microscopy. Chinese Journal of Agricultural Biotechnology, 5(3), 269-276. https://doi.org/10.1017/S1479236208002441.

Soman, D.V.A. and Arora, A. 2018. Bioremediation of municipal sewage water with Azolla microphylla. International Journal of Advanced Research, 6(5), 101-108. https://doi.org/10.21474/IJAR01/7012.

Sood, A., Uniyal, P.L., Prasanna, R. and Ahluwalia, A. S. 2011. Phytoremediation potential of Aquatic Macrophyte, Azolla. Ambio, 41, 122-137. https://doi.org/10.1007/s13280-011-0159-z.

Speelman, E.N., Van Kempen, M.M.L., Barke, J., Brinkhuis, H., Reichart, G.J., Smolders, A.J.P., Roelofs, J.G.M., Sangiorgi, De Leeuw, J.W., Lotter, A.F. and Sinninghe Damste, J.S. 2009. The Eocene Arctic Azolla bloom: Environmental conditions, productivity and carbon draw down. Geobiology, 7(2), 155170. https://doi.org/10.1111/j.14724669.2009.00195.x.

Sudaryono, A. 2006. Use of Azolla (Azolla pinnata) meal as a substitute for defatted soybean meal in diets of juvenile black tiger shrimp (Penaeus monodon). Journal of Coastal Development, 9, 145-154. http://eprints.undip.ac.id/473/1/use_of_azolla_meal.pdf

Swain, B.K., Naik, P.K. and Beura, C.K. 2022. Nutritive value of Azolla as poultry feed - A review. Indian Journal of Animal Nutrition, 39, 1-11. https://doi.org/10.5958/2231-6744.2022.00001.9.

Tamang, Y. and Samanta, G. 1995. Feeding value of Azolla (Azolla pinnata) in goats. Annales de Zootechnie, 44(sup 1), 62. https://doi.org/10.1051/animres:19950532

Tan, C.Y., Li, G., Lu, X.Q. and Chen, Z.L. 2010. Biosorption of basic orange using dried A. filiculoides. Ecological Engineering, 36(10), 1333-1340. https://doi.org/10.1016/j.ecoleng.2010.06.009.

Torbati, S., Khataee, A.R. and Movafeghi, A. 2014. Application of watercress (Nasturtium officinale R. Br.) for biotreatment of a textile dye: Investigation of some physiological responses and effects of operational parameters. Chemical Engineering Research and Design, 92(10), 1934-1941. https://doi.org/10.1016/j.cherd.2014.04.022.

Tung, H.F.T.C. and Shen, T.C. 1985. Studies of the Azolla pinnata - Anabaena azollae symbiosis: Concurrent growth of Azolla with rice. Aquatic Botany, 22(2), 145-152. https://doi.org/10.1016/0304-3770(85)90043-9.

Valderrama, A., Tapia, J., Penailillo, P. and Carvajal, D.E. 2013. Water phytoremediation of cadmium and copper using Azolla filiculoides Lam. in a hydroponic system. Water and Environment Journal, 27(3), 293-300. https://doi.org/10.1111/wej.12015.

van Hove, C. 1989. Azolla and its multiple uses with emphasis on Africa. Rome, Italy: Food and Agriculture Organization, Rome, Italy. 59 pages.

Varun S.T., Prasad, R.M.V., Bindu Madhuri, S., Jayalaxmi, P. and Shashi Kumar, M. 2021. Effect of Azolla supplementation on the carcass characteristics of Deccani Ram Lambs reared under grazing based production system. International Journal of Livestock Research, 11(2), 78-84.

Verma, G., Prakriti, K.A. and Babu, S. 2022. Implications and future prospects of Azolla as a low-cost organic input in agriculture. Agriculture, 1(6), 1-7.

Wagner, G.M. 1996. The Utricularia-Cyanophyta and Azolla - Anabaena associations: Their ecology, N fixation rates, and effects as biofertilizers on rice. Ph.D. thesis, University of Dar es Salaam, Dar et Salaam, Tanzania.

Yadav, R.K., Abraham, G., Singh, Y.V. and Singh, P.K. 2014. Advancement in the utilization of Azolla-Anabaena system in relation to sustainable agricultural practices. Proceedings of the Indian National Science Academy, 2(2), 301-316. https://doi.org/10.16943/ptinsa/2014/v80i2/55108.

Yang, Y.Q., Deng, S.F., Yang, Y.Q. and Ying, Z.Y. 2022. Comparative analysis of the endophytic bacteria inhabiting the phyllosphere of aquatic fern Azolla species by high-throughput sequencing. BMC Microbiology, 22(1), 246. https://doi.org/10.1186/s12866-022-02639-2.

Downloads

Published

2024-05-28

How to Cite

K, S. D., KTV, V., K. S., D., CV, R., & Sangeetha Menon. (2024). Exploring the Multifaceted Benefits of Azolla: A Comprehensive Review of an Aquatic Fern’s Biological and Practical Contributions. International Journal of Ecology and Environmental Sciences, 50(5), 661–672. https://doi.org/10.55863/ijees.2024.0264