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ABSTRACT
Microplastics generated from diverse categories of plastic wastes primarily accumulate in terrestrial ecosystems
and subsequently find their way to aquatic ecosystems. As the use of plastic goods has been increasing globally
during the last few decades, it is likely that the amount of microplastics too would increase significantly and get
accumulated in the soil. An increased level of microplastics might have deleterious effects on soil properties and
microbiota. Microplastics being small (< 5 mm), could be easily consumed by pedophagous soil fauna such as
earthworms and get dispersed widely in soil and might even reach the groundwater table. It has been reported
that microplastics such as polyvinyl chloride, polypropylene etc., can bind to toxic compounds, including pesticides
and transfer these into the gut of earthworms, adversely impacting their growth, ecological functions, and
reproduction. It is apprehended that earthworms and other soil fauna could accelerate the degradation of
microplastics into nano forms which could enhance environmental risk not only for these animals but also for
other beneficial soil biotas.
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INTRODUCTION

The worldwide plastic production amounted to
359 million tons in 2018, and projections suggest
that it could increase to 33 billion tons by 2050
(Anonymous 2019). Out of all plastic wastes
generated between 1950 and 2015, about 79%, i.e.,
6300 megatons, was discarded directly into the
environment or the landfills, predominantly in soil
(Geyer et al. 2017, Zhu et al. 2019, Lin et al. 2020).
The accumulated plastic wastes break down into
smaller fragments and particles due to physical,
chemical, and biological actions in the environment.
This breakdown results in the formation of plastics
<5mm in size, called microplastics (MPs)
(Thompson et al. 2004). The atmospheric deposition,
land application of sludge, agricultural plastic film,

etc., result in the generation of MPs (Zhu et al. 2019).
Municipal sludge contains synthetic fibres used in
personal care or household products as sediments.
Its application in the land has been identified as the
major input of MPs into the soil (Horton et al. 2017).
According to reports, the occurrence of MPs in
organic fertilizers produced through biowaste
fermentation and composting has been observed. The
presence of MPs, with levels reaching up to 895
particles per kg, is believed to serve as a pathway
for their introduction into the soil (Weithmann et al.
2018). Studying the mechanism of the degradation
of MPs in soil and their probable impact on the biota
has been one of the biggest challenges (Alimi et al.
2018, Mishra et al. 2022b). The soil ecosystem is
susceptible to MP contamination since it could
adversely impact beneficial soil organisms like



494            Tanushree et al. : Earthworm-microplastic interaction Int. J. Ecol. Env. Sci.

earthworms and microorganisms (Samal et al. 2020,
Mishra et al. 2022a).

EARTHWORMS AND THEIR ECOLOGICAL
FUNCTIONS
         Soil fauna not only regulates soil diversity but
also maintains the ecological balance. The earthworm
is considered the dominant soil fauna. It has been
reported to be a sensitive bio-indicator (Fusaro et al.
2018). The activity zone of earthworms in soil is
known as the drilosphere (Hickman and Reid 2008).
It includes the burrows, worm casts, biological
systems, physicochemical interactions, and
associated organisms (Hickman and Reid 2008). The
soil’s physical and chemical properties, nutrients, and
rainfall patterns influence earthworm diversity
(Acharya and Mishra 2020). Their feeding and
burrowing behaviour facilitate the breakdown of soil
organic matter and turnover of soil nutrients. This
aids in the structural development of soil aggregates
(Adhikari and Hartemink 2016). Three main
ecological types of earthworms have been recognized
depending on their soil burrowing movement. These
are (a) anecic, (b) endogeic, and (c) epigeic (Butt
and Lowe 2010). The deep-burrowing species that
can form continuous, permanent, vertically running
burrows from the soil surface to the subsoil are anecic
earthworms. The endogeic earthworms build burrows
and live under the soil surface, which they then refill
with the cast (Fig. 1). Most epigeic earthworms do

Figure 1. Functional role of earthworms in soil

not form burrows and are generally litter feeders
(Chatelain and Mathieu 2017).

Earthworms are recognized as “keystone species”
due to their significant contribution to the soil
formation process, underscoring their crucial role in
ecosystem functioning. They have also been
described as ‘ecosystem engineers’ (Wright et al.
2013). Earthworms form pores in the soil while they
move through it. It has been found that soil
aggregation of <0.4mm in the fraction was
predominant in treatment without an earthworm
population, compared to earthworm-treated soil. The
porous soil has increased surface area, influencing
physical, chemical, and biological properties (Zaffar
and Lu 2015). The ecological category and
preferences determine the movement of earthworms
in soil (Gergs et al. 2022).  Aporrectodea caliginosa,
an endogeic earthworm, is common in arable fields
in Europe (Le Couteulx et al. 2015, Bart et al. 2018,
Jouni et al. 2018) which are predominantly active
within the upper soil layer, creating branched
horizontal burrows. It has been demonstrated that
the presence of earthworms significantly helps plant
growth (Mayilswami and Reid 2010) by facilitating
nutrient availability in the soil. A meta-analysis
revealed that the earthworms increase crop yield by
25% and above-ground biomass by 23% (van
Groenigen et al. 2014). The earthworm Millsonia
anomala caused an increase in leaf weight, cob
biomass, and the number of cobs of maize by 40,



50 (4): 493-504           Tanushree et al. : Earthworm-microplastic interaction      495

152, and 130%, respectively. Earthworms influence
the distribution of soil organic materials, increasing
soil penetrability and ion transport in soils under
certain environmental conditions. Earthworm tissues
and cast material are enriched in certain nutrients
concerning the soil matrix, but the rate of cycling
increases by ingesting soil organic material. The
earthworm has a remarkable ability to bio-
accumulate the residues of toxic organic substances,
including pesticides, herbicides, antibiotics, and
heavy metals into their tissue (Byambas et al. 2019,
Mishra et al 2020, Samal et al. 2020).

MICROPLASTICS

The production of plastics has recently touched
around 280 million tons globally (Yu et al. 2022).
Plastic wastes are now considered to be the major
environmental pollutants. An enormous number of
plastics accumulate in the marine and terrestrial
ecosystems as waste materials (Rillig 2012, Mishra
et al. 2022a). Large plastic pieces accumulate in soil
are mainly due to anthropogenic influence (Rillig et
al. 2017). Only 20% of plastic wastes is recycled
(Letcher 2020). Plastic debris with a size of less than
5mm is known as microplastics (MPs) (Wright et al.
2013, Alimi et al. 2018, Rochman and Hoellein
2020). Various environmental weathering processes,
such as mechanical breakdown, microbiological
decomposition, and photodegradation result in the
formation of MPs of variable shapes and sizes
(Lenaker et al. 2019, Xu et al. 2021). These are found
to contaminate a wide range of aquatic environments
(Lambert and Wagner 2018). MPs generated from
diverse groups of plastic polymers accumulate in soil.
The probable adverse ecological impact of MPs has
encouraged scientists to undertake elaborate studies
on their effects on biota (Boots et al. 2019). Industrial
manufacturing (Lei et al. 2017), solid waste landfill
(Andrady 2017), agriculture plastic mulching (Gao
et al. 2019), sewage irrigation (Li et al. 2018), and
sludge fertilizer (Mahon et al. 2017), soil amendment
application (Weithmann et al. 2018), fertilizer
coatings (Bian et al. 2022), and littering (Yang et al.
2021), are the major causes for the origin of MPs.
Strong hydrophobicity, small particle size, large
specific surface area, stable chemical properties, and
adsorption of other environmental pollutants such

as antibiotics, heavy metals, and toxic chemical
residues by MPs pose huge environmental risks
(Alimi et al. 2018, Karbalaei et al. 2018, Kumar et
al. 2020, Rillig and Lehmann 2020, MorenoJiménez
et al. 2022, Yu et al. 2022).

Types
MPs are generally classified as per sources into two
categories, primary and secondary (Lots et al. 2017).
Manufactured plastic objects that satisfy specific
uses, such as clothing fibres and personal care
products, are primary MPs (Andrady 2011). These
are manufactured as microbeads and microfilaments
for commercial use, particularly in cosmetics and
synthetic fabrics (Cole et al. 2013). The secondary
MPs are the tiny fragments of more oversized plastic
items generated from natural weathering in the
environment (Lehtiniemi et al. 2018) (Fig.2).
Secondary MP sources are the large plastic pieces
through photodegradation and mechanical abrasion
in natural environments (Siegfried et al. 2017).

Toxicity
Various additives may be present with MPs that are
generally not chemically bound to plastic polymers.
These may be prone to leaching into the soil matrix
(Hahladakis et al. 2018, Ge et al. 2021). Plastics in
soil degrade due to physical, chemical, and microbial
action. This results in releasing harmful substances
which include phthalates, bisphenol A,
polybrominated diphenyl ethers, and heavy metals
(Hahladakis et al. 2018). These substances adversely
impact soil properties and the soil ecosystem. Studies
have indicated that soil MP toxicity is related to its
characteristics and extractable additives (Kim et al.
2020). The environmental risk due to MPs on biota
significantly increases in the presence of pesticide
residues in agricultural soil (Mishra et al. 2022b).
The characteristics of MPs, such as their small
particle size, large surface area, and hydrophobic
surface, contribute to their ability to accumulate
environmental contaminants from the surrounding
ecosystem. Consequently, concentration of the
contaminants in MPs can be hundreds or even
thousands of times higher compared to the
surrounding environment (Zhao et al. 2021). In the
co-exposure of MPs and environmental pollutants,
MPs may transfer contaminants and increase their
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accumulation in organisms (Zhou et al. 2021).
Stronger phytotoxicity, reduction in plant biomass,
photosynthetic inhibition, reduced root activities, and
oxidative damage might result from the combined
exposure of MPs and heavy metals (Chen et al. 2020,
Dong et al. 2021).

Transportation
The transformation and transportation of MPs depend
upon the surrounding conditions and these
accumulate in plants and organisms, which causes a
direct impact on individual species. It also impacts
the trophic chain composition and the soil ecosystem
(Mendes 2021). MPs get accumulated in soil and
transported by the soil fauna, such as earthworms,
mites, and bouncing bugs, through their feeding and
burrowing behaviours (Maaß et al. 2017) (Fig.2). The
dispersion and redistribution of MPs also occur by
mites, bullet tails, gophers, and moles. They can
scrape or chew MPs (Maaß et al. 2017, Zhu et al.
2018). The migration of MPs can also be influenced
by the growth of plant roots. For instance, the
presence of corn roots leads to the creation of
additional soil pores and gaps, potentially affecting
the movement of MPs. These soil pores and gaps
are conducive to the upward movement of MPs in
soil up to 7–12 cm (Li et al. 2021a).

Adsorbents
MPs act as potent adsorbents of various pollutants
(Fig. 2), such as heavy metals and agrochemicals.
MPs function as adsorbers of plastic additives,
including plasticizers and flame retardants, as well
as other environmental pollutants, such as organic
contaminants and heavy metals (Wang et al. 2020).
Recent studies have indicated that MPs such as
polyvinyl chloride and polypropylene could absorb
pesticides monocrotophos, glyphosate, butachlor and
pretilachlor forming hydrogen bonds (Fig. 3) and
facilitate in the intake of these toxic compounds into
the earthworm gut (Mishra et al. 2022a). The
chemical additives to MPs can easily leach into the
soil with consequent adverse effects on plant growth.
The rate of adverse effects is directly proportional
to the rate of adsorption capacity of the MPs. This
depends on the shape, polymer structure,
degradation, additives, concentration, and location
of the MPs (Lozano and Rillig 2020, Zhou et al. 2021,
Okeke et al. 2022).

Interaction with soil biota
Research on MP in soil has so far focused on
earthworms and nematodes. However, other
invertebrate taxa, such as enchytraeids,
collembolans, terrestrial snails, isopods, and oribatid
mites have also been investigated (Selonen et al.
2020, Song et al. 2019) to some extent. Most of the
focused research areas include growth (Xiang et al.
2019, Boots et al. 2019), survival, reproductive
fitness and success (Kim et al. 2020, Lahive et al.
2019, Qu et al. 2019), disruption of ingestion
behaviour (Song et al. 2019), response to oxidative
stress (Chen et al. 2020, Zhou et al. 2021),
locomotion (Kim and An 2019, Qu and Wang 2020),
and change in expression in the gene (Qu and Wang
2020, Yang et al. 2021). Terrestrial organisms may
ingest MPs (Fig 2). For example, ciliates, amoeba,
flagellates, springtails, and earthworms ingest MPs
resulting in decreased survival and growth rates,
intestinal damage and immune disorders, oxidative
stress, neurotoxicity, damage to DNA and abnormally
expressed genes (Sarker et al. 2020, Wang et al. 2020,
2022a) in these animals. These can even be
transferred along the food chain (Huerta Lwanga et
al. 2017). MPs accumulate in the guts and stomachs
of soil organisms, damaging their immune system
(Fig. 2). It also affects their feeding behaviour and
development (Ding et al. 2019, Eltemsah and Bøhn
2019, Gao et al. 2019). MPs also damage
earthworms’ gut cells and DNA (Jiang et al. 2020).
Research has also shown that MPs harm invertebrate
sperms (Kwak and An 2021). In addition, the
diversity and richness of the gut microbiome of soil
animals may be changed due to microplastics, which
may participate in the cycle of essential elements
and soil organic matter decomposition (Zhu et al.
2018). The impacts of MPs on animals are intricately
linked to factors such as the concentration, shape,
size, type, and additives of the MPs to which they
are exposed (Lambert et al. 2017, Wang et al. 2019,
Chen et al. 2020, Li et al. 2021b).

INTERACTION BETWEEN EARTHWORMS
AND MICROPLASTICS

Dispersal by earthworms
Earthworms, specifically anaecic and endogeic ones,
can carry MPs deep into the soil. These get transported
via casts and burrows. For example, polyethylene is
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Figure 2. Genesis, transportation and impact of microplastics in the terrestrial ecosystem

transported to a depth of 10 cm in soil vertically,
because of which soil biotas get exposed to MPs.
MPs have been reported to reach the groundwater
table (Rillig et al. 2017). The introduction of MPs in
soil could have a wide-ranging impact on earthworms
as  (i) MPs might adversely influence soil microbial
growth, and due to the reduced microbial population,
the decomposition of organic material is generally
much slower deeper in the soil. This indicates that
the longer persistence of MPs in deep soil could
impact the nutrient pool (Rillig et al. 2017); (ii) After
passage through soil strata, MPs finally reach the
groundwater table, which can have long-ranging

detrimental effects (Rillig et al. 2017, Stock et al. 2021);
and (iii) MPs, under further mechanical
disintegration, may become nano-sized particles with
different characteristics and environmental risks (Rillig
et al. 2017).

Impact on earthworm health
MPs accumulate in the gut or stomach of earthworms
and other soil fauna and have adverse effects on these
animals (Bergami et al. 2016, Yu et al. 2020). Accu-
mulation of microplastics could adversely affect the
feeding behaviour, growth, and development of soil
animals (Yu et al. 2020). Particles in smaller sizes
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can penetrate the cell membranes, translocated in
tissues, and then enter the trophic levels (Shen et al.
2019). Due to higher abundance, smaller micro and
nano-plastics may be harmful to soil biota (Qi et al.
2020).

Effects on the burrows
The X-ray visualization of the endogeic earthworm
burrowing activities in soil cores identified the
burrow parameters. These were the key factors of
water transfer. A low LDPE concentration didn’t
affect saturated water flow (Yu et al. 2020). L.

Figure 3. Molecular interaction of microplastics with pesticides
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terrestris made more burrows when the soil surface
was treated with 7% MPs (Huerta Lwanga et al.
2017).

Degradation by earthworms
The adult earthworms, Eisenia fetida’s avoidance
behaviour to MP contaminated soil was assessed.
Fossil-based polyethylene terephthalate (PET) and
bio-based polylactic acid (PLA) MPs were found to
be preferred by earthworms. The selective preference
was likely due to the odour of the polymer monomers.
The analysis of earthworm cast by microscopy
counting and liquid chromatography-tandem mass
spectrometry indicated MP excretion. The
elimination half-life was 9.3 hours for polyethylene
terephthalate (PET) and 45 hours for polylactic acid
(PLA). The more extended excretion period of PLA
could be related to its potential to break down in the
earthworms’ digestive tract (Wang et al. 2022b).

IMPACT ON SOIL PROPERTIES AND
FUNCTIONS

MPs get dispersed in the soil matrix after entering
the soil environment under the effects of dry and wet
cycles, soil management measures, and biological
disturbances (O’Connor et al. 2019). As a result, soil
physicochemical properties change, which might
include levels of C, N, and P and pH (Jiang et al.
2020, Qi et al. 2020, Wang et al. 2022a). MPs not
only release chemical additives but also adsorb
various toxic substances. This aggravates soil
pollution and affects soil properties (Hahladakis et
al. 2018, Zhang Z. et al. 2022). Soil porosity and
water holding capacity are increased by MPs, and
reduce their bulk density and moisture permeability
(de Souza Machado et al. 2019, 2018, Jiang et al.
2020). MPs also destroy their structural integrity
(Wan et al. 2019, Jiang et al. 2020) and their structure
(Zhao et al. 2021).

Soil enzymatic actions can be inhibited or
stimulated due to MPs (Brendel et al. 2018, Qian et
al. 2018, de Souza Machado et al. 2018, 2019, Fei et
al. 2020, Yu et al. 2020, Ren et al. 2021). The
presence of MPs in soil may affect microbial
diversity and community structure (Lei et al. 2017,
Awet et al. 2018, Hou et al. 2021). Activities of
certain soil enzymes, FDAse and phenoloxidase got

stimulated at a high concentration of polypropylene
(28% w/w), while a low concentration (7% w/w) had
no significant effect (Li et al. 2020). The type of
polymer in MPs and exposure time influence their
impact (Yu et al. 2022). Any change in soil
physicochemical properties and nutrient cycle by
MPs in agricultural ecosystems leads to an
unpredictable impact on greenhouse gas emissions.
It has been documented that MPs could affect soil
CO

²
, N

²
O, and CH

4
 emissions (Brusseau et al. 2020,

Ren et al. 2020, Gao et al. 2021).

CONCLUSIONS

MPs generated from plastic waste materials pose a
significant threat to the soil ecosystem. The impact
of micro and nano plastics on terrestrial ecosystems
needs an elaborate study to find out how the below-
ground food web is influenced by their accumulation.
Studies should also focus to elucidate the potential
role of MPs as adsorbents of toxic environmental
contaminants. MPs, in combination xenobiotics,
could enter the food webs of below-ground and
above-ground ecosystems with very serious
consequences. Earthworms, which play a dominant
role in the soil are likely to be impacted adversely
due to MP contamination with a consequent
reduction in their ecological functions. MPs, too,
could interfere in the growth and reproduction of
earthworms, population and diversity of soil
microbes, decomposition of organics, and nutrient
availability with consequent detrimental effects on
soil health.
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