Synergistic Methods for Chromium Cleanup Using Plant-Growth-Promoting Bacteria

Authors

  • Ligi Lambert D Rosario Department of Biotechnology, St. Peter’s College, Kolenchery, Ernakulam, 682311, Kerala, India
  • Sona S Dev Department of Biotechnology, St. Peter’s College, Kolenchery, Ernakulam, 682311, Kerala, India

DOI:

https://doi.org/10.55863/ijees.2024.0390

Keywords:

Chromium remediation, Biostimulation, Bioaugmentation, Phytoremediation, Environmental pollution cleanup, Plant growth promoting bacteria

Abstract

Chromium (Cr) pollution contributes a significant threat to environmental and human health due to its widespread industrial use and toxic effects. Among the various remediation strategies, the application of plant-growth-promoting bacteria (PGPB) has emerged as a promising approach. The article explores the synergistic potential of PGPB in enhancing plant-based remediation techniques for chromium cleanup. PGPBs enhance plant growth and stress tolerance through mechanisms such as hormone production, nitrogen fixation, and pathogen inhibition. Key strategies discussed include bioaugmentation, biostimulation, phytoextraction, and phytostabilization. These methods leverage the abilities of PGPB to promote plant growth, enhance chromium uptake, and immobilize chromium in the soil, thereby reducing its bioavailability and mobility. Case studies and experimental evidence highlight the effectiveness of PGPB in chromium-contaminated environments, demonstrating improved plant growth and metal accumulation. This review underscores the need for interdisciplinary collaboration, field-scale implementation, and ongoing research to harness the full potential of PGPB-mediated phytoremediation for sustainable chromium cleanup.

References

Ahemad, M. 2015. Enhancing phytoremediation of chromium-stressed soils through plant-growth-promoting bacteria. Journal of Genetic Engineering and Biotechnology, 13(1), 51-58. https://doi.org/10.1016/j.jgeb.2015.02.001

Ahmed, A., Sara Taha, A. ., Sundas, R.Q. and Man-Qun, W. 2021. Heavy metals and pesticide toxicity in agricultural soil and plants: ecological risks and human health Implications. Toxics, 9, 42. https://doi.org/10.3390/toxics9030042

Akunwa, N.K., Muhammad, M.N. and Akunna, J.C. 2014. Treatment of metal-contaminated wastewater: A comparison of low-cost biosorbents. Journal of Environmental Management, 146, 517-523. https://doi.org/10.1016/j.jenvman.2014.08.014

Ali, S., Mir, R. A., Tyagi, A., Manzar, N., Kashyap, A. S., Mushtaq, M., Raina, A., Park, S., Sharma, S., Mir, Z.A., Lone, S.A., Bhat, A.A., Baba, U., Mahmoudi, H. and Bae, H. 2023. Chromium toxicity in plants: signaling, mitigation, and future perspectives. Plants, 12(7), 1502. https://doi.org/10.3390/plants12071502

Alves, A.R.A., Yin, Q., Oliveira, R.S., Silva, E.F. and Novo, L.A.B. 2022. Plant growth-promoting bacteria in phytoremediation of metal-polluted soils: Current knowledge and future directions. Science of the Total Environment, 838, 156435. https://doi.org/10.1016/j.scitotenv. 2022.156435

Babu, A.G., Kim, J.D. and Oh, B.T. 2013. Enhancement of heavy metal phytoremediation by Alnus firma with endophytic Bacillus thuringiensis GDB-1. Journal of Hazardous Materials, 250-251, 477-483. https://doi.org/10.1016/j.jhazmat.2013.02.014

Baker, A.J.M. 1981. Accumulation of heavy metals in soil and plants. Journal of Plant Nutrition, 3(1-4), 643-654. https://doi.org/10.1080/01904168109362867

Bakshe, P. and Jugade, R. 2023. Phytostabilization and rhizofiltration of toxic heavy metals by heavy metal accumulator plants for sustainable management of contaminated industrial sites: A comprehensive review. Journal of Hazardous Materials Advances, 10, 100293. https://doi.org/10.1016/j.hazadv.2023.100293

Bakshi, A. and Panigrahi, A.K. 2018. A comprehensive review on chromium induced alterations in fresh water fishes. Toxicology Reports, 5, 440-447. https://doi.org/10.1016/j.toxrep.2018.03.007

Baldiris, R., Acosta-Tapia, N., Montes, A., Hernández, J. and Vivas-Reyes, R. 2018. Reduction of hexavalent chromium and detection of chromate reductase (ChrR) in Stenotrophomonas maltophilia. Molecules, 23(2), 406. https://doi.org/10.3390/molecules23020406

Bandara, K.R.V., Manage, P.M., Bandara, K.R.V. and Manage, P.M. 2022. Heavy metal contamination in the coastal environment and trace level identification. In: Mancuso, M., Abbas, M.H.H., Bottari, T. and Abdelhafez, A.A. (Eds.). Marine Pollution - Recent Development, Intechopen. https://doi.org/10.5772/INTECHOPEN.106653

Barnhart, J. 1997. Occurrences, uses, and properties of Chromium. Regulatory Toxicology and Pharmacology, 26(1 I), 3-7. https://doi.org/10.1006/rtph.1997.1132

Berger, J., Palta, J. and Vadez, V. 2016. Review: An integrated framework for crop adaptation to dry environments: Responses to transient and terminal drought. Plant Science, 253, 58-67. https://doi.org/10.1016/j.plantsci.2016.09.007

Bhat, S.A., Bashir, O., Ul Haq, S.A., Amin, T., Rafiq, A., Ali, M., Américo-Pinheiro, J.H.P. and Sher, F. 2022. Phytoremediation of heavy metals in soil and water: An eco-friendly, sustainable and multidisciplinary approach. Chemosphere, 303, 134788. https://doi.org/10.1016/j.chemosphere.2022.134788

Bortoloti, G.A. and Baron, D. 2022. Phytoremediation of toxic heavy metals by Brassica plants: A biochemical and physiological approach. Environmental Advances, 8, 100204. https://doi.org/10.1016/j.envadv.2022.100204

Boulé, J., Sholberg, P.L., Lehman, S.M., O’Gorman, D.T. and Svircev, A.M. 2011. Isolation and characterization of eight bacteriophages infecting Erwinia amylovora and their potential as biological control agents in British Columbia, Canada. Canadian Journal of Plant Pathology, 33(3), 308-317. https://doi.org/10.1080/07060661.2011.588250

Braud, A., Jézéquel, K., Bazot, S. and Lebeau, T. 2009. Enhanced phytoextraction of an agricultural Cr- and Pb-contaminated soil by bioaugmentation with siderophore-producing bacteria. Chemosphere, 74(2), 280-286. https://doi.org/10.1016/j.chemosphere.2008.09.013

Briffa, J., Sinagra, E. and Blundell, R. 2020. Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon, 6(9), e04691. https://doi.org/10.1016/j.heliyon.2020.e04691

Bruno, L.B., Anbuganesan, V., Karthik, C., Tripti, Kumar, A., Banu, J.R., Freitas, H. and Rajkumar, M. 2021. Enhanced phytoextraction of multi-metal contaminated soils under increased atmospheric temperature by bioaugmentation with plant growth promoting Bacillus cereus. Journal of Environmental Management, 289, 112553. https://doi.org/10.1016/j.jenvman.2021.112553

Chatterjee, S., Sau, G.B. and Mukherjee, S.K. 2009. Plant growth promotion by a hexavalent chromium reducing bacterial strain, Cellulosimicrobium cellulans KUCr3. World Journal of Microbiology and Biotechnology, 25(10), 1829-1836. https://doi.org/10.1007/s11274-009-0084-5

Coetzee, J.J., Bansal, N. and Chirwa, E.M.N. 2020a. Chromium in environment, its toxic effect from chromite-mining and ferrochrome industries, and its possible bioremediation. Exposure and Health, 12(1), 51-62. https://doi.org/10.1007/S12403-018-0284-Z

DalCorso, G., Fasani, E., Manara, A., Visioli, G. and Furini, A. 2019. Heavy metal pollutions: state of the art and innovation in phytoremediation. International Journal of Molecular Sciences, 20(14), 3412. https://doi.org/10.3390/ijms20143412

DesMarias, T.L. and Costa, M. 2019. Mechanisms of chromium-induced toxicity. Current Opinion in Toxicology, 14(Vi), 1-7. https://doi.org/10.1016/j.cotox. 2019.05.003

Galani, A., Mamais, D., Noutsopoulos, C., Anastopoulou, P., & Varouxaki, A. (2022). Biotic and abiotic biostimulation for the reduction of hexavalent chromium in contaminated aquifers. Water (Switzerland), 14(1). https://doi.org/10.3390/w14010089

Gautam, P.K., Gautam, R.K., Banerjee, S., Chattopadhyaya, M.C. and Pandey, J.D. 2016. Heavy metals in the environment: Fate, transport, toxicity and remediation technologies. pp. 101-130. In: Pathania, D. (Ed.) Heavy Metals: Sources, Toxicity and Remediation Techniques, Nova Scotia Publication, New Delhi.

Glick, B.R. 2012. Plant Growth-Promoting Bacteria: mechanisms and applications. Scientifica, 2012, 1-15. https://doi.org/10.6064/2012/963401

Gul, S., Naz, A., Fareed, I. and Irshad, M. 2015. Reducing heavy metals extraction from contaminated soils using organic and inorganic amendments – a review. Polish Journal of Environmental Studies, 24(3), 1423-1426. https://doi.org/10.15244/pjoes/26970

Hadia-E-Fatima. and Ahmed, A. 2018. Micro-remediation of chromium contaminated soils. Peer J, 2018(12), 6076. https://doi.org/10.7717/peerj.6076

Hasanuzzaman, M., Bhuyan, M.H.M.B., Parvin, K., Bhuiyan, T.F., Anee, T.I., Nahar, K., Hossen, M.S., Zulfiqar, F., Alam, M.M. and Fujita, M. 2020. Regulation of ROS metabolism in plants under environmental stress: A review of recent experimental evidence. International Journal of Molecular Sciences, 21(22), 1–44. https://doi.org/10.3390/ijms 21228695

Huang, H., Zhao, Y., Fan, L., Jin, Q., Yang, G. and Xu, Z. 2020. Corrigendum to “Enhancement of heavy metal (Mn) phytoremediation by Broussonetia papyrifera with two Bacillus spp. Species”. Chemosphere, 261, 128540. https://doi.org/10.1016/j.chemosphere.2020.128540

Kafle, A., Timilsina, A., Gautam, A., Adhikari, K., Bhattarai, A. and Aryal, N. 2022. Phytoremediation: Mechanisms, plant selection and enhancement by natural and synthetic agents. Environmental Advances, 8, 100203. https://doi.org/10.1016/j.envadv.2022.100203

Kamran, M.A., Bibi, S., Xu, R. kou, Hussain, S., Mehmood, K. and Chaudhary, H.J. 2017. Phyto-extraction of chromium and influence of plant growth promoting bacteria to enhance plant growth. Journal of Geochemical Exploration, 182, 269-274. https://doi.org/10.1016/j.gexplo.2016.09.005

Khan, A.U., Khan, A.N., Waris, A., Ilyas, M. and Zamel, D. 2022. Phytoremediation of pollutants from wastewater: A concise review. Open Life Sciences, 17(1), 488-496. https://doi.org/10.1515/biol-2022-0056

Kotoky, R. and Pandey, P. 2020a. Rhizosphere assisted biodegradation of benzo(a)pyrene by cadmium resistant plant-probiotic Serratia marcescens S2I7, and its genomic traits. Scientific Reports, 10(1), art 5279. https://doi.org/10.1038/s41598-020-62285-4

Kotoky, R. and Pandey, P. 2020b. Rhizosphere mediated biodegradation of benzo(A)pyrene by surfactin producing soil bacilli applied through Melia azadirachta rhizosphere. International Journal of Phytoremediation, 22(4), 363-372. https://doi.org/10.1080/15226514.2019.1663486

Kour, D., Kaur, T., Devi, R., Yadav, A., Singh, M., Joshi, D., Singh, J., Suyal, D.C., Kumar, A., Rajput, V.D., Yadav, A.N., Singh, K., Singh, J., Sayyed, R.Z., Arora, N.K. and Saxena, A.K. 2021. Beneficial microbiomes for bioremediation of diverse contaminated environments for environmental sustainability: present status and future challenges. Environmental Science and Pollution Research, 28(20), 24917-24939. https://doi.org/10.1007/s11356-021-13252-7

Kumar, M., Seth, A., Singh, A.K., Rajput, M.S. and Sikandar, M. 2021. Remediation strategies for heavy metals contaminated ecosystem: A review. Environmental and Sustainability Indicators, 12, 100155. https://doi.org/10.1016/j.indic.2021.100155

Lara, P., Morett, E. and Juárez, K. 2017. Acetate biostimulation as an effective treatment for cleaning up alkaline soil highly contaminated with Cr(VI). Environmental Science and Pollution Research, 24(33), 25513-25521. https://doi.org/10.1007/s11356-016-7191-2

Li, Y., Lin, J., Huang, Y., Yao, Y., Wang, X., Liu, C., Liang, Y., Liu, K. and Yu, F. 2020. Bioaugmentation-assisted phytoremediation of manganese and cadmium co-contaminated soil by Polygonaceae plants (Polygonum hydropiper L. and Polygonum lapathifolium L.) and Enterobacter sp. FM-1. Plant and Soil, 448(1-2), 439-453. https://doi.org/10.1007/s11104-020-04447-x

Liu, K., Chen, P., Lu, J., Zhu, Y., Xu, Y., Liu, Y. and Liu, J. 2020. protective effect of purple tomato anthocyanidin on Chromium(VI)-induced autophagy in LMH Cells by inhibiting endoplasmic reticulum stress. Biological Trace Element Research, 194(2), 570–580. https://doi.org/10.1007/s12011-019-01795-3

Liu, K., Cui, Y., Li, H., Qi, C., Cheng, G., Gao, X., Zhang, Z., Liu, Y. and Liu, J. 2022. Hydrogen-rich medium regulates Cr(VI)-induced er stress and autophagy signalling in DF-1 cells. Biological Trace Element Research, 200(5), 2329-2337. https://doi.org/10.1007/s12011-021-02850-8

Ma, Y., Rajkumar, M., Zhang, C. and Freitas, H. 2016. The beneficial role of bacterial endophytes in heavy metal phytoremediation. Journal of Environmental Management, 174, 14-25. https://doi.org/10.1016/j.jenvman.2016.02.047

Manoj, S.R., Karthik, C., Kadirvelu, K., Arulselvi, P.I., Shanmugasundaram, T., Bruno, B. and Rajkumar, M. 2020. Understanding the molecular mechanisms for the enhanced phytoremediation of heavy metals through plant growth promoting rhizobacteria: A review. Journal of Environmental Management, 254, 109779. https://doi.org/10.1016/j.jenvman.2019.109779

Maqbool, Z., Asghar, H.N., Shahzad, T., Hussain, S., Riaz, M., Ali, S., Arif, M.S. and Maqsood, M. 2015. Isolating, screening and applying chromium reducing bacteria to promote growth and yield of okra (Hibiscus esculentus L.) in chromium contaminated soils. Ecotoxicology and Environmental Safety, 114, 343-349. https://doi.org/10.1016/j.ecoenv.2014.07.007

Martin, Y.E. and Johnson, E.A. 2012. Biogeosciences survey: studying interactions of the biosphere with the lithosphere, hydrosphere and atmosphere. Progress in Physical Geography, 36(6), 833-852. https://doi.org/10.1177/0309133312457107

Mitra, S., Chakraborty, A.J., Tareq, A.M., Bin, E.T., Nainu, F., Khusro, A., Idris, A.M., Khandaker, M.U., Osman, H., Alhumaydhi, F.A. and Simal-Gandara, J. 2022. Impact of heavy metals on the environment and human health: Novel therapeutic insights to counter the toxicity. Journal of King Saud University - Science, 34(3), 101865. https://doi.org/10.1016/j.jksus.2022.101865

Montreemuk, J., Stewart, T.N. and Prapagdee, B. 2024. Bacterial-assisted phytoremediation of heavy metals: Concepts, current knowledge, and future directions. Environmental Technology and Innovation, 33, 103488. https://doi.org/10.1016/j.eti.2023.103488

Nebeská, D., Trögl, J., Ševcù, A., Špánek, R., Marková, K., Davis, L., Burdová, H. and Pidlisnyuk, V. 2021. Miscanthus x giganteus role in phytodegradation and changes in bacterial community of soil contaminated by petroleum industry. Ecotoxicology and Environmental Safety, 224, 112630. https://doi.org/10.1016/j.ecoenv.2021.112630

Ngalimat, M.S., Yahaya, R.S.R., Baharudin, M.M.A.A., Yaminudin, S.M., Karim, M., Ahmad, S.A. and Sabri, S. 2021. A review on the biotechnological applications of the operational group Bacillus amyloliquefaciens. Microorganisms, 9(3), 614. https://doi.org/10.3390/microorganisms9030614

Nur-E-Alam, M., Mia, M.A.S., Ahmad, F. and Rahman, M.M. 2020. An overview of chromium removal techniques from tannery effluent. Applied Water Science, 10(9), art 205. https://doi.org/10.1007/s13201-020-01286-0

Olanrewaju, O.S., Glick, B.R. and Babalola, O.O. 2017. Mechanisms of action of plant growth promoting bacteria. World Journal of Microbiology and Biotechnology, 33(11), art 197. https://doi.org/10.1007/s11274-017-2364-9

Oliveira, H. 2012. Chromium as an environmental pollutant: insights on induced plant toxicity. Journal of Botany, 2012, 375843. https://doi.org/10.1155/2012/375843

Orozco-Mosqueda, M.D.C., Glick, B.R. and Santoyo, G. 2020. ACC deaminase in plant growth-promoting bacteria (PGPB): An efficient mechanism to counter salt stress in crops. Microbiological Research, 235, 126439. https://doi.org/10.1016/j.micres.2020.126439

Poria, V., Dêbiec-Andrzejewska, K., Fiodor, A., Lyzohub, M., Ajijah, N., Singh, S. and Pranaw, K. 2022. Plant growth-promoting bacteria (PGPB) integrated phytotechnology: A sustainable approach for remediation of marginal lands. Frontiers in Plant Science, 13, 999866. https://doi.org/10.3389/fpls.2022.999866

Prasad, S., Yadav, K.K., Kumar, S., Gupta, N., Cabral-Pinto, M.M.S., Rezania, S., Radwan, N. and Alam, J. 2021. Chromium contamination and effect on environmental health and its remediation: A sustainable approaches. Journal of Environmental Management, 285, 112174. https://doi.org/10.1016/j.jenvman.2021.112174

Rajkumar, M., Nagendran, R., Lee, K.J., Lee, W.H. and Kim, S.Z. 2006. Influence of plant growth promoting bacteria and Cr6+ on the growth of Indian mustard. Chemosphere, 62(5), 741-748. https://doi.org/10.1016/j.chemosphere. 2005.04.117

Ramakrishna, W., Rathore, P., Kumari, R. and Yadav, R. 2020. Brown gold of marginal soil: Plant growth promoting bacteria to overcome plant abiotic stress for agriculture, biofuels and carbon sequestration. Science of the Total Environment, 711, 135062. https://doi.org/10.1016/j.scitotenv.2019.135062

Razzak, S.A., Faruque, M.O., Alsheikh, Z., Alsheikhmohamad, L., Alkuroud, D., Alfayez, A., Hossain, S.M.Z. and Hossain, M.M. 2022. A comprehensive review on conventional and biological-driven heavy metals removal from industrial wastewater. Environmental Advances, 7, 100168. https://doi.org/10.1016/j.envadv.2022.100168

Ren, X.M., Guo, S.J., Tian, W., Chen, Y., Han, H., Chen, E., Li, B.L., Li, Y.Y. and Chen, Z.J. 2019. Effects of plant growth-promoting bacteria (PGPB) inoculation on the growth, antioxidant activity, Cu uptake, and bacterial community structure of rape (Brassica napus L.) grown in Cu-contaminated agricultural soil. Frontiers in Microbiology, 10, 01455. https://doi.org/10.3389/fmicb.2019.01455

Rocha, S.M.B., Antunes, J.E.L., Araujo, J.M.A., de Aquino, J.P.A., de Melo, W.J., Mendes, L.W. and de Araujo, A.S.F. 2019. Capability of plant growth-promoting bacteria in chromium-contaminated soil after application of composted tannery sludge. Annals of Microbiology, 69(6), 665-671. https://doi.org/10.1007/s13213-019-01455-w

Rosariastuti, R., Prijambada, I.D., Ngadiman., Prawidyarini, G.S. and Putri, A.R. 2013. Isolation and identification of plant growth promoting and chromium uptake enhancing bacteria from soil contaminated by leather tanning industrial waste. Journal of Basic & Applied Sciences, 9, 243-251. https://doi.org/10.6000/1927-5129.2013.09.32

Shackira, A.M. and Puthur, J.T. 2019. Phytostabilization of heavy metals: understanding of principles and practices. pp. 263-282. In: Srivastava, S., Srivastava, A. and Suprasanna, P. (Eds.) Plant-Metal Interactions. Springer, Cham. https://doi.org/10.1007/978-3-030-20732-8_13

Sharma, N., Sodhi, K.K., Kumar, M. and Singh, D.K. 2021. Heavy metal pollution: Insights into chromium eco-toxicity and recent advancement in its remediation. Environmental Nanotechnology, Monitoring and Management, 15, 100388. https://doi.org/10.1016/j.enmm.2020.100388

Sharma, P., Singh, S.P., Parakh, S.K. and Tong, Y.W. 2022. Health hazards of hexavalent chromium (Cr(VI)) and its microbial reduction. Bioengineered, 13(3), 4923-4938. https://doi.org/10.1080/21655979.2022.2037273

Shimod, K.P., Vineethkumar, V., Prasad, T.K. and Jayapal, G. 2022. Effect of urbanization on heavy metal contamination: a study on major townships of Kannur District in Kerala, India. Bulletin of the National Research Centre, 46(1), art 4. https://doi.org/10.1186/s42269-021-00691-y

Silambarasan, S., Logeswari, P., Valentine, A., Cornejo, P. and Kannan, V.R. 2020. Pseudomonas citronellolis strain SLP6 enhances the phytoremediation efficiency of Helianthus annuus in copper-contaminated soils under salinity stress. Plant and Soil, 457(1-2), 241-253. https://doi.org/10.1007/s11104-020-04734-7

Singh, H.P., Mahajan, P., Kaur, S., Batish, D.R. and Kohli, R.K. 2013. Chromium toxicity and tolerance in plants. Environmental Chemistry Letters, 11(3), 229-254. https://doi.org/10.1007/s10311-013-0407-5

Suman, J., Uhlik, O., Viktorova, J. and Macek, T. 2018. Phytoextraction of heavy metals: A promising tool for clean-up of polluted environment? Frontiers in Plant Science, 871, 1476. https://doi.org/10.3389/fpls.2018. 01476

Tang, X., Huang, Y., Li, Y., Wang, L., Pei, X., Zhou, D., He, P. and Hughes, S.S. 2021. Study on detoxification and removal mechanisms of hexavalent chromium by microorganisms. Ecotoxicology and Environmental Safety, 208, 111699. https://doi.org/10.1016/J.ECOENV.2020. 111699

Thongchai, A., Meeinkuirt, W., Taeprayoon, P. and Pichtel, J. 2019. Soil amendments for cadmium phytostabilization by five marigold cultivars. Environmental Science and Pollution Research, 26(9), 8737-8747. https://doi.org/10.1007/s11356-019-04233-y

Tiepo, A.N., Constantino, L.V., Madeira, T.B., Gonçalves, L.S.A., Pimenta, J.A., Bianchini, E., de Oliveira, A.L.M., Oliveira, H.C. and Stolf-Moreira, R. 2020. Plant growth-promoting bacteria improve leaf antioxidant metabolism of drought-stressed Neotropical trees. Planta, 251(4), 83. https://doi.org/10.1007/s00425-020-03373-7

Tirry, N., Tahri Joutey, N., Sayel, H., Kouchou, A., Bahafid, W., Asri, M. and El Ghachtouli, N. 2018. Screening of plant growth promoting traits in heavy metals resistant bacteria: Prospects in phytoremediation. Journal of Genetic Engineering and Biotechnology, 16(2), 613-619. https://doi.org/10.1016/j.jgeb.2018.06.004

Tumolo, M., Ancona, V., De Paola, D., Losacco, D., Campanale, C., Massarelli, C. and Uricchio, V.F. 2020. Chromium pollution in European water, sources, health risk, and remediation strategies: An overview. International Journal of Environmental Research and Public Health, 17(15), 17155438. https://doi.org/10.3390/ijerph17155438

Vishnupradeep, R., Bruno, L. B., Taj, Z., Karthik, C., Challabathula, D., Tripti, Kumar, A., Freitas, H. and Rajkumar, M. 2022. Plant growth promoting bacteria improve growth and phytostabilization potential of Zea mays under chromium and drought stress by altering photosynthetic and antioxidant responses. Environmental Technology and Innovation, 25, 102154. https://doi.org/10.1016/j.eti.2021.102154

Wani, P.A. and Khan, M.S. 2010. Bacillus species enhance growth parameters of chickpea (Cicer arietinum L.) in chromium stressed soils. Food and Chemical Toxicology, 48(11), 3262-3267. https://doi.org/10.1016/j.fct.2010.08. 035

Yan, A., Wang, Y., Tan, S. N., Mohd Yusof, M. L., Ghosh, S. and Chen, Z. 2020. Phytoremediation: A promising approach for revegetation of heavy metal-polluted land. Frontiers in Plant Science, 11, 359. https://doi.org/10.3389/fpls.2020.00359

Yan, G., Gao, Y., Xue, K., Qi, Y., Fan, Y., Tian, X., Wang, J., Zhao, R., Zhang, P., Liu, Y. and Liu, J. 2023. Toxicity mechanisms and remediation strategies for chromium exposure in the environment. Frontiers in Environmental Science, 11, 1131204. https://doi.org/10.3389/fenvs.2023. 1131204

Yang, X., Liu, P., Yao, M., Sun, H., Liu, R., Xie, J. and Zhao, Y. 2021. Mechanism and enhancement of Cr(VI) contaminated groundwater remediation by molasses. Science of the Total Environment, 780(2519), 146580. https://doi.org/10.1016/j.scitotenv.2021.146580

Zgorelec, Z., Bilandzija, N., Knez, K., Galic, M. and Zuzul, S. 2020. Cadmium and Mercury phytostabilization from soil using Miscanthus × giganteus. Scientific Reports, 10(1), 1-10. https://doi.org/10.1038/s41598-020-63488-5

Downloads

Published

2024-07-25

How to Cite

D Rosario, L. L., & Dev, S. S. (2024). Synergistic Methods for Chromium Cleanup Using Plant-Growth-Promoting Bacteria. International Journal of Ecology and Environmental Sciences, 50(6), 817–829. https://doi.org/10.55863/ijees.2024.0390