Microplastic-Earthworm Interactions: A Critical Review


  • Tanushree Moharana School of Life Sciences, Sambalpur University, Jyoti Vihar, Burla, 768019, Odisha, India
  • Aliva Patnaik School of Life Sciences, Sambalpur University, Jyoti Vihar, Burla, 768019, Odisha, India
  • C.S.K Mishra Department of Zoology, College of Basic Sciences and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar, 751003, India
  • Binayak Prasad Behera Mitrani Department of Desert Ecology, Swiss Institute for Dryland Environmental and Energy Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion university of the Negev, 849900, Midreshet Ben-Gurion, Israel
  • Suryasikha Samal Department of Zoology, College of Basic Sciences and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar, 751003, India
  • Rashmi Rekha Samal Environmental Sustainability Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, 751013, Odisha, India




Soil, Secondary pollutant, adsorbent, biota, pollution, xenobiotics, bioindicator


Microplastics generated from diverse categories of plastic wastes primarily accumulate in terrestrial ecosystems and subsequently find their way to aquatic ecosystems. As the use of plastic goods has been increasing globally during the last few decades, it is likely that the amount of microplastics too would increase significantly and get accumulated in the soil. An increased level of microplastics might have deleterious effects on soil properties and microbiota. Microplastics being small (< 5 mm), could be easily consumed by pedophagous soil fauna such as earthworms and get dispersed widely in soil and might even reach the groundwater table. It has been reported that microplastics such as polyvinyl chloride, polypropylene etc., can bind to toxic compounds, including pesticides and transfer these into the gut of earthworms, adversely impacting their growth, ecological functions, and reproduction. It is apprehended that earthworms and other soil fauna could accelerate the degradation of microplastics into nano forms which could enhance environmental risk not only for these animals but also for other beneficial soil biotas.


Acharya, P. and Mishra, C.S.K. 2020. Earthworm population density and diversity with respect to soil physico chemical properties, microbial population and exoenzyme dynamics in two agroclimatic zones of Odisha, India. Ecology, Environment and Conservation, 26, 216-224.

Adhikari, K. and Hartemink, A.E. 2016. Linking soils to ecosystem services - A global review. Geoderma, 262, 101-111. https://doi.org/10.1016/j.geoderma.2015.08.009

Alimi, O.S., Farner Budarz, J., Hernandez, L.M. and Tufenkji. N. 2018. Microplastics and Nanoplastics in Aquatic Environments: Aggregation, Deposition, and Enhanced Contaminant Transport. Environmental Science and Technology, 52(4), 1704-1724. https://doi.org/10.1021/acs.est.7b05559

Andrady, A.L. 2011. Microplastics in the marine environment. Marine Pollution Bulletin, 62(8), 1596-605. https://doi.org/https://doi.org/10.1016/j.marpolbul.201105.030

Andrady, A.L. 2017. The plastic in microplastics: A review. Marine Pollution Bulletin, 119(1), 12-22. https://doi.org/https://doi.org/10.1016/j.marpolbul.2017.01.082

Anonymous. 2019. Plastics - The Facts 2019: An Analysis of European Plastic Production, Demand and Waste Data for 2019. Plastics Europe, Brussels, Belgium. https://www.plasticseurope.org/en/resources/publications/274-plastics-facts-2017

Awet, T.T., Kohl, Y., Meier, F., Straskraba, S., Grün, A.L., Ruf, T., Jost, C., Drexel, R., Tunc, E. and Emmerling, C. 2018. Effects of polystyrene nanoparticles on the microbiota and functional diversity of enzymes in soil. Environmental Sciences Europe, 30(1), 11. https://doi.org/10.1186/s12302-018-0140-6

Bart, S., Amossé, J., Lowe, C.N., Mougin, C., Péry, A.R. and Pelosi, C. 2018. Aporrectodea caliginosa, a relevant earthworm species for a posteriori pesticide risk assessment: current knowledge and recommendations for culture and experimental design. Environmental Science and Pollution Research, 25(34), 33867-33881. https://doi.org/10.1007/s11356-018-2579-9

Bergami, E., Bocci, E., Vannuccini, M.L., Monopoli, M., Salvati, A., Dawson, K.A. and Corsi, I. 2016. Nano-sized polystyrene affects feeding, behavior and physiology of brine shrimp Artemia franciscana larvae. Ecotoxicology and Environmental Safety, 123, 18-25. https://doi.org/10.1016/j.ecoenv.2015.09.021

Bian, W., An, L., Zhang, S., Feng, J., Sun, D., Yao, Y., Shen, T., Yang, Y. and Zhang, M. 2022. The long-term effects of microplastics on soil organomineral complexes and bacterial communities from controlled-release fertilizer residual coating. Journal of Environmental Management, 304, 114193. https://doi.org/10.1016/j.jenvman.2021. 114193

Boots, B., Russell. C.W. and Green, D.S. 2019. Effects of microplastics in soil ecosystems: Above and below ground. Environmental Science and Technology, 53(19), 11496-11506. https://doi.org/10.1021/acs.est.9b03304

Brendel, S., Fetter, É., Staude, C., Vierke, L. and Biegel-Engler, A. 2018. Short-chain perfluoroalkyl acids: Environmental concerns and a regulatory strategy under REACH. Environmental Sciences Europe, 30(1), 9. https://doi.org/10.1186/s12302-018-0134-4

Brusseau, M.L., Anderson, R.H. and Guo, B. 2020. PFAS concentrations in soils: Background levels versus contaminated sites. Science of The Total Environment, 740, 140017. https://doi.org/10.1016/j.scitotenv.2020.140017

Byambas, P., Hornick, J.L., Marlier, D. and Francis, F. 2019. Vermiculture in animal farming: A review on the biological and nonbiological risks related to earthworms in animal feed. Cogent Environmental Science, 5(1), 1591328. https://doi.org/10.1080/23311843.2019.1591328

Chatelain, M. and Mathieu, J. 2017. How good are epigeic earthworms at dispersing? An investigation to compare epigeic to endogeic and anecic groups. Soil Biology and Biochemistry, 111, 115-123. https://doi.org/https://doi.org/10.1016/j.soilbio.2017.04.004

Chen, H., Wang, Y., Sun, X., Peng, Y. and Xiao, L. 2020. Mixing effect of polylactic acid microplastic and straw residue on soil property and ecological function. Chemosphere, 243, 125271. https://doi.org/10.1016/j.chemosphere.2019.125271

Cole, M., Lindeque, P., Fileman, E., Halsband, C., Goodhead, R., Moger, J. and Galloway, T.S. 2013. Microplastic ingestion by zooplankton. Environmental Science and Technology, 47(12), 6646-6655. https://doi.org/10.1021/es400663f

de Souza Machado, A.A., Lau, C.W., Kloas, W., Bergmann, J., Bachelier, J.B., Faltin, E., Becker, R, Gorlich, A.S. and Rillig, M.C. 2019. Microplastics can change soil properties and affect plant performance. Environmental Science and Technology, 53(10), 6044-6052. https://doi.org/10.1021/acs.est.9b01339

de Souza Machado, A.A., Lau, C.W., Till, J., Kloas, W., Lehmann, A., Becker, R. and Rillig, M.C. 2018. Impacts of microplastics on the soil biophysical environment. Environmental Science and Technology, 52(17), 9656-9665. https://doi.org/10.1021/acs.est.8b02212

Ding, S., Lin, X. and He, S. 2019. Earthworms: A source of protein. Journal of Food Science And Engineering, 9, 159-170. https://doi.org/10.17265/2159-5828/2019.05.001

Dong, Y., Gao, M., Qiu, W. and Song, Z. 2021. Effect of microplastics and arsenic on nutrients and microorganisms in rice rhizosphere soil. Ecotoxicology and Environmental Safety, 211, 111899. https://doi.org/10.1016/j.ecoenv. 2021.111899

Eltemsah, Y.S. and Bøhn, T. 2019. Acute and chronic effects of polystyrene microplastics on juvenile and adult Daphnia magna. Environmental Pollution, 254(Pt A), 112919. https://doi.org/10.1016/j.envpol.2019.07.087

Fei, Y., Huang, S., Zhang, H., Tong, Y., Wen, D., Xia, X., Wang, H., Luo, Y. and Barceló, D. 2020. Response of soil enzyme activities and bacterial communities to the accumulation of microplastics in an acid cropped soil. Science of The Total Environment, 707, 135634. https://doi.org/10.1016/j.scitotenv.2019.135634

Fusaro, S., Gavinelli, F., Lazzarini, F. and Paoletti, M.G. 2018. Soil Biological Quality Index based on earthworms (QBS-e). A new way to use earthworms as bioindicators in agro-ecosystems. Ecological Indicators, 93, 1276-1292. https://doi.org/10.1016/j.ecolind.2018.06.007

Gao, B., Yao, H., Li, Y. and Zhu, Y. 2021. Microplastic addition alters the microbial community structure and stimulates soil carbon dioxide emissions in vegetablegrowing soil. Environmental Toxicology and Chemistry, 40(2), 352-365. https://doi.org/10.1002/etc.4916

Gao, H., Yan, C., Liu, Q., Ding, W., Chen, B. and Li, Z. 2019. Effects of plastic mulching and plastic residue on agricultural production: A meta-analysis. Science of The Total Environment, 651(Pt 1), 484-492. https://doi.org/10.1016/j.scitotenv.2018.09.105

Ge, J., Li, H., Liu, P., Zhang, Z., Ouyang, Z. and Guo, X. 2021. Review of the toxic effect of microplastics on terrestrial and aquatic plants. Science of The Total Environment, 791, 148333. https://doi.org/10.1016/j.scitotenv.2021.148333

Gergs, A., Rakel, K., Bussen, D., Capowiez, Y., Ernst, G. and Roeben, V. 2022. Integrating earthworm movement and life history through dynamic energy budgets. Conservation Physiology, 10(1), coac042. https://doi.org/10.1093/conphys/coac042

Geyer, R., Jambeck, J.R. and Law, K.L. 2017. Production, use, and fate of all plastics ever made. Science Advances, 3(7), e1700782. https://doi.org/doi:10.1126/sciadv.1700782

Hahladakis, J.N., Velis, C.A., Weber, R., Iacovidou, E. and Purnell, P. 2018. An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal and recycling. Journal of Hazardous Materials, 344, 179-199. https://doi.org/10.1016/j.jhazmat.2017.10.014

Hickman, Z.A. and Reid, B.J. 2008. Earthworm assisted bioremediation of organic contaminants. Environment International, 34(7), 1072-1081. https://doi.org /10.1016/j.envint.2008.02.013

Horton, A.A., Walton, A., Spurgeon, D.J., Lahive, E. and Svendsen, C. 2017. Microplastics in freshwater and terrestrial environments: Evaluating the current understanding to identify the knowledge gaps and future research priorities. Science of the Total Environment, 586, 127-141. https://doi.org/10.1016/j.scitotenv.2017.01.190

Hou, J., Xu, X., Yu, H., Xi, B. and Tan, W. 2021. Comparing the long-term responses of soil microbial structures and diversities to polyethylene microplastics in different aggregate fractions. Environment International, 149, 106398. https://doi.org/10.1016/j.envint.2021.106398

Huerta Lwanga, E., Gertsen, H., Gooren, H., Peters, P., Salánki, T., van der Ploeg, M., Besseling, E., Koelmans, A.A. and Geissen, V. 2017. Incorporation of microplastics from litter into burrows of Lumbricus terrestris. Environmental Pollution, 220 (Pt A), 523-531. https://doi.org/https://doi.org/10.1016/j.envpol.2016.09.096

Jiang, X., Chang, Y., Zhang, T., Qiao, Y., Klobuèar, G. and Li, M. 2020. Toxicological effects of polystyrene microplastics on earthworm (Eisenia fetida). Environmental Pollution, 259, 113896. https://doi.org/10.1016/j.envpol.2019.113896

Jouni, F., Sanchez-Hernandez, J.C., Mazzia, C., Jobin, M., Capowiez, Y. and Rault, M. 2018. Interspecific differences in biochemical and behavioral biomarkers in endogeic earthworms exposed to ethyl-parathion. Chemosphere, 202, 85-93. https://doi.org/10.1016/j.chemosphere.2018. 03.060

Karbalaei, S., Hanachi, P., Walker, T.R. and Cole, M. 2018. Occurrence, sources, human health impacts and mitigation of microplastic pollution. Environmental Science and Pollution Research, 25(36), 36046-36063. https://doi.org/10.1007/s11356-018-3508-7

Kim, S.W. and An, Y-J. 2019. Soil microplastics inhibit the movement of springtail species. Environment International, 126, 699-706. https://doi.org/10.1016/j.envint.2019.02.067

Kim, S.W., Kim, D., Jeong, S.W. and An, Y.J. 2020. Size-dependent effects of polystyrene plastic particles on the nematode Caenorhabditis elegans as related to soil physicochemical properties. Environmental Pollution, 258, 113740. https://doi.org/10.1016/j.envpol.2019.113740

Kumar, M., Xiong, X., He, M., Tsang, D.C.W., Gupta, J., Khan, E., Harrad, S., Hou, D., Ok, Y.S. and Bolan, N.S. 2020. Microplastics as pollutants in agricultural soils. Environmental Pollution, 265(Pt A), 114980. https://doi.org/10.1016/j.envpol.2020.114980

Kwak, J.I. and An, Y.J. 2021. Microplastic digestion generates fragmented nanoplastics in soils and damages earthworm spermatogenesis and coelomocyte viability. Journal of Hazardous Materials, 402, 124034. https://doi.org/10.1016/j.jhazmat.2020.124034

Lahive, E., Walton, A., Horton, A.A., Spurgeon, D.J. and Svendsen, C. 2019. Microplastic particles reduce reproduction in the terrestrial worm Enchytraeus crypticus in a soil exposure. Environmental Pollution, 255(Pt 2), 113174. https://doi.org/10.1016/j.envpol.2019.113174

Lambert, S. and Wagner, M. 2018. Microplastics are contaminants of emerging concern in freshwater environments: an overview. Pp. 1-23. In: Wagner, M. and Lambert, S. (Eds.) Freshwater Microplastics. The Handbook of Environmental Chemistry, vol 58. Springer, Cham. https://doi.org/10.1007/978-3-319-61615-5_1

Lambert, S., Scherer, C. and Wagner, M. 2017. Ecotoxicity testing of microplastics: Considering the heterogeneity of physicochemical properties. Integrated Environmental Assessment and Management, 13(3), 470-475. https://doi.org/10.1002/ieam.1901

Le Couteulx, A., Wolf, C., Hallaire, V. and Peres, G. 2015. Burrowing and casting activities of three endogeic earthworm species affected by organic matter location. Pedobiologia, 58, 97-103. https://doi.org/10.1016/j.pedobi. 2015.04.004

Lehtiniemi, M., Hartikainen, S., Näkki, P., Engström-Öst, J., Koistinen, A., and Setälä, O. 2018. Size matters more than shape: Ingestion of primary and secondary microplastics by small predators. Food Webs, 17, e00097. https://doi.org/10.1016/j.fooweb.2018.e00097

Lei, K., Qiao, F., Liu, Q., Wei, Z., Qi, H., Cui, S., Yue, X., Deng, Y. and An, L. 2017. Microplastics releasing from personal care and cosmetic products in China. Marine Pollution Bulletin, 123(1-2), 122-126. https://doi.org/10.1016/j.marpolbul.2017.09.016

Lenaker, P.L., Baldwin, A.K., Corsi, S.R., Mason, S.A., Reneau, P.C. and Scott, J.W. 2019. Vertical distribution of microplastics in the water column and surficial sediment from the Milwaukee River Basin to Lake Michigan. Environmental Science and Technology, 53(21), 12227-12237. https://doi.org/10.1021/acs.est.9b03850

Letcher, T.M. 2020. Introduction to plastic waste and recycling. Pp. 3-12. In: Letcher, T.M. (Ed.) Plastic Waste and Recycling, Academic Press, New York.

Li, B., Song, W., Cheng, Y., Zhang, K., Tian, H., Du, Z., Wang, J., Wang, J., Zhang, W. and Zhu, L. 2021a. Ecotoxicological effects of different size ranges of industrial-grade polyethylene and polypropylene microplastics on earthworms Eisenia fetida. Science of The Total Environment, 783, 147007. https://doi.org/10.1016/j.scitotenv.2021.147007

Li, H., Lu, X., Wang, S., Zheng, B., and Xu, Y. 2021b. Vertical migration of microplastics along soil profile under different crop root systems. Environmental Pollution, 278, 116833. https://doi.org/10.1016/j.envpol.2021.116833

Li, X., Chen, L., Ji, Y., Li, M., Dong, B., Qian, G., Zhou, J. and Dai, X. 2020. Effects of chemical pretreatments on microplastic extraction in sewage sludge and their physicochemical characteristics. Water Research, 171, 115379. https://doi.org/10.1016/j.watres.2019.115379

Li, X., Chen, L., Mei, Q., Dong, B., Dai, X., Ding, G. and Zeng, E.Y. 2018. Microplastics in sewage sludge from the wastewater treatment plants in China. Water Research, 142, 75-85. https://doi.org/10.1016/j.watres.2018.05.034

Lin, D., Yang, G., Dou, P., Qian, S., Zhao, L., Yang, Y. and Fanin, N. 2020. Microplastics negatively affect soil fauna but stimulate microbial activity: insights from a field-based microplastic addition experiment. Proceedings of the Royal Society B: Biological Sciences, 287(1934), 20201268. https://doi.org/doi:10.1098/rspb.2020.1268

Lots, F.A., Behrens, P., Vijver, M.G., Horton, A.A. and Bosker, T. 2017. A large-scale investigation of microplastic contamination: abundance and characteristics of microplastics in European beach sediment. Marine Pollution Bulletin, 123(1-2), 219-226. https://doi.org/10.1016/j.marpolbul.2017.08.057

Lozano, Y.M. and Rillig, M.C. 2020. Effects of microplastic fibers and drought on plant communities. Environmental Science and Technology, 54(10), 6166–6173. https://doi.org/10.1021/acs.est.0c01051

Maaß, S., Daphi, D., Lehmann, A. and Rillig, M.C. 2017. Transport of microplastics by two collembolan species. Environmental Pollution, 225, 456-459. https://doi.org/10.1016/j.envpol.2017.03.009

Mahon, A.M., O’Connell, B., Healy, M.G., O’Connor, I., Officer, R., Nash, R. and Morrison, L. 2017. Microplastics in sewage sludge: effects of treatment. Environmental Science and Technology, 51(2), 810-818. https://doi.org/10.1021/acs.est.6b04048

Mayilswami, S. and Reid, B. 2010. Effect of earthworms on nutrients dynamics in soil and growth of crop. Pp. 1-6. In: Gilkes, R.J. and Prakongkep, N. (Eds.) Soil Solutions for a Changing World: Proceedings of the 19th World Congress of Soil Science. International Union of Soil Sciences, Australia.

Mendes, L.A. 2021. Microplastics effects in the terrestrial environment. Pp. 877-905. In: Rocha-Santos, T., Costa, M.F. and Mouneyrac, C. (Eds) Handbook of Microplastics in the Environment. Springer, Cham. https://doi.org/10.1007/978-3-030-39041-9_46

Mishra, C.S.K., Samal, S., Rout, A., Pattanayak, A. and Acharya, P. 2020. Evaluating the implications of moisture deprivation on certain biochemical parameters of the earthworm Eudrilus eugeniae with microbial population and exoenzyme activities of the organic substrate. Invertebrate Survival Journal. https://doi.org/10.25431/1824-307X/isj.v0i0.1-8

Mishra, C.S.K., Samal, S., Samal, R.R., Behera, B.P., Pallavini, P., Dash, P., Brahma, S., Moharana, T., Pradhan, S. and Acharya, P. 2022a. Polyvinylchloride and polypropylene as adsorbents of the pesticide monocrotophos enhance oxidative stress in Eudrillus eugeniae (Kinberg). Chemosphere, 295, 133837. https://doi.org/10.1016/j.chemosphere.2022.133837

Mishra, C.S.K., Samal, S., Samal, R.R., Acharya, P., Nayak, S., Moharana, T. and Pradhan, S. 2022b. The potential risk of soil microplastic contamination on earthworms. Pp. ??-??. In: Vig, A.S., Suthar, S.S. and Singh, J. (Eds.) Earthworms and their Ecological Significance, NOVA Science Publ., USA.

Moreno Jiménez, E., Leifheit, E.F., Plaza, C., Feng, L., Bergmann, J., Wulf, A., Lehmann, A. and Rillig, M.C. 2022. Effects of microplastics on crop nutrition in fertile soils and interaction with arbuscular mycorrhizal fungi. Journal of Sustainable Agriculture and Environment, 1, 66-72. https://doi.org/10.1002/sae2.12006

O’Connor, D., Pan, S., Shen, Z., Song, Y., Jin, Y., Wu, W.M. and Hou, D. 2019. Microplastics undergo accelerated vertical migration in sand soil due to small size and wet-dry cycles. Environmental Pollution, 249, 527-534. https://doi.org/10.1016/j.envpol.2019.03.092

Okeke, E.S., Okoye, C.O., Atakpa, E.O., Ita, R.E., Nyaruaba, R. and Mgbechidinma, C.L. and Akon, O.A. 2022. Microplastics in Agroecosystems-Impacts on Ecosystem Functions and Food Chain. Resource Conservation and Recycling, 177, 1-14. https://doi.org/10.1016/j.resconrec.2021.105961

Qi, R., Jones, D.L., Li, Z., Liu, Q. and Yan, C. 2020. Behavior of microplastics and plastic film residues in the soil environment: A critical review. Science of The Total Environment, 703, 134722. https://doi.org/10.1016/j.scitotenv.2019.134722

Qian, H., Zhang, M., Liu, G., Lu, T., Qu, Q., Du, B. and Pan, X. 2018. Effects of soil residual plastic film on soil microbial community structure and fertility. Water, Air, and Soil Pollution, 229, 1-11. https://doi.org/10.1007/s11270-018-3916-9

Qu, M., Qiu, Y., Kong, Y. and Wang, D. 2019. Amino modification enhances reproductive toxicity of nanopolystyrene on gonad development and reproductive capacity in nematode Caenorhabditis elegans. Environmental Pollution, 254 (Pt A), 112978. https://doi.org/10.1016/j.envpol.2019.112978

Ren, X., Tang, J., Liu, X. and Liu, Q. 2020. Effects of microplastics on greenhouse gas emissions and the microbial community in fertilized soil. Environmental Pollution, 256, 113347. https://doi.org/10.1016/j.envpol.2019.113347

Ren, X., Yin, S., Wang, L. and Tang, J. 2021. Microplastics in plant-microbes-soil system: A review on recent studies. Science of The Total Environment, 816, 151523. https://doi.org/10.1016/j.scitotenv.2021.151523

Rillig, M.C. 2012. Microplastic in terrestrial ecosystems and the soil? Environmental Science and Technology, 46(12), 6453-6454. https://doi.org/10.1021/es302011r

Rillig, M.C. and Lehmann, A. 2020. Microplastic in terrestrial ecosystems. Science, 368, 1430-1431.

Rillig, M., Ziersch, L. and Hempel, S. 2017. Microplastic transport in soil by earthworms. Scientific Reports, 7(1), 1362. https://doi.org/10.1038/s41598-017-01594-7

Rochman, C.M. and Hoellein, T. 2020. The global odyssey of plastic pollution. Science, 368(6496), 1184-1185. https://doi.org/doi:10.1126/science.abc4428

Samal, S., Mishra, C.S.K. and Sahoo, S. 2020. Dermal, histological anomalies with variations in enzyme activities of the earthworms Lampito mauritii and Drawida willsi after short term exposure to organophosphate pesticides. Invertebrate Survival Journal, 17(1), 117-128. https://doi.org/10.25431/1824-307X/isj.v0i0.117-128

Sarker, A., Deepo, D.M., Nandi, R., Rana, J., Islam, S., Rahman, S., Hossain, M.N., Islam, M.S., Baroi, A. and Kim, J-E. 2020. A review of microplastics pollution in the soil and terrestrial ecosystems: A global and Bangladesh perspective. Science of The Total Environment, 733, 139296. https://doi.org/10.1016/j.scitotenv.2020.139296

Selonen, S., Dolar, A., Kokalj, A.J., Skalar, T., Dolcet, L.P., Hurley, R. and van Gestel, C.A. 2020. Exploring the impacts of plastics in soil–the effects of polyester textile fibers on soil invertebrates. Science of The Total Environment, 700, 134451. https://doi.org/10.1016/j.scitotenv.2019.134451

Shen, M., Zhang, Y., Zhu, Y., Song, B., Zeng, G., Hu, D., Wen, X. and Ren, X. 2019. Recent advances in toxicological research of nanoplastics in the environment: A review. Environmental Pollution, 252(Pt A), 511-521. https://doi.org/10.1016/j.envpol.2019.05.102

Siegfried, M., Koelmans, A.A., Besseling, E. and Kroeze, C. 2017. Export of microplastics from land to sea. A modelling approach. Water Research, 127, 249-257. https://doi.org/10.1016/j.watres.2017.10.011

Song, Y., Cao, C., Qiu, R., Hu, J., Liu, M., Lu, S., Shi, H., Raley-Susman, K.M. and He, D. 2019. Uptake and adverse effects of polyethylene terephthalate microplastics fibers on terrestrial snails (Achatina fulica) after soil exposure. Environmental pollution, 250, 447-455. https://doi.org/10.1016/j.envpol.2019.04.066

Stock, V., Laurisch, C., Franke, J., Dönmez, M.H., Voss, L., Böhmert, L., Braeuning, A. and Sieg, H. 2021. Uptake and cellular effects of PE, PP, PET and PVC microplastic particles. Toxicology in Vitro, 70, 105021. https://doi.org/10.1016/j.tiv.2020.105021

Thompson, R.C., Olsen, Y., Mitchell, R.P., Davis, A., Rowland, S.J., John, A.W., McGonigle, D. and Russell, A.E. 2004. Lost at sea: where is all the plastic? Science, 304(5672), 838. https://doi.org/10.1126/science.1094559

van Groenigen, J.W., Lubbers, I.M., Vos, H.M., Brown, G.G., de Deyn, G.B. and van Groenigen, K.J. 2014. Earthworms increase plant production: a meta-analysis. Scientific Reports, 4(1), 1-7. https://doi.org/10.1038/srep06365

Wan, Y., Wu, C., Xue, Q. and Hui, X. 2019. Effects of plastic contamination on water evaporation and desiccation cracking in soil. Science of The Total Environment, 654, 576-582. https://doi.org/10.1016/j.scitotenv.2018.11.123

Wang, H.T., Ding, J., Xiong, C., Zhu, D., Li, G., Jia, X.Y., Zhu, Y.G. and Xue, X.M. 2019. Exposure to microplastics lowers arsenic accumulation and alters gut bacterial communities of earthworm Metaphire californica. Environmental Pollution, 251, 110-116. https://doi.org/10.1016/j.envpol.2019.04.054

Wang, F., Wang, Q., Adams, C.A., Sun, Y. and Zhang, S. 2022a. Effects of microplastics on soil properties: current knowledge and future perspectives. Journal of Hazardous Materials, 424(Pt C), 127531. https://doi.org/10.1016/j.jhazmat.2021.127531

Wang, Q., Adams, C.A., Wang, F., Sun, Y. and Zhang, S. 2022b. Interactions between microplastics and soil fauna: a critical review. Critical Reviews in Environmental Science and Technology, 52, 3211-3243. https://doi.org/10.1080/10643389.2021.1915035

Wang, W., Ge, J. and Yu, X. 2020. Bioavailability and toxicity of microplastics to fish species: A review. Ecotoxicology and Environmental Safety, 189, 109913. https://doi.org/10.1016/j.ecoenv.2019.109913

Weithmann, N., Moller, J.N., Loder, M.G.J., Piehl, S., Laforsch, C. and Freitag, R. 2018. Organic fertilizer as a vehicle for the entry of microplastic into the environment. Science Advances, 4(4), eaap8060. https://doi.org/doi:10.1126/sciadv.aap8060

Wright, S.L., Thompson, R.C. and Galloway, T.S. 2013. The physical impacts of microplastics on marine organisms: a review. Environmental Pollution, 178, 483-492. https://doi.org/10.1016/j.envpol.2013.02.031

Xiang, Q., Zhu, D., Chen, Q-L., O’Connor, P., Yang, X-R., Qiao, M. and Zhu, Y-G. 2019. Adsorbed sulfamethoxazole exacerbates the effects of polystyrene (<“ 2 ìm) on gut microbiota and the antibiotic resistome of a soil collembolan. Environmental Science and Technology, 53(21), 12823-12834. https://doi.org/10.1021/acs.est.9b04795

Xu, G., Liu, Y., Song, X., Li, M. and Yu, Y. 2021. Size effects of microplastics on accumulation and elimination of phenanthrene in earthworms. Journal of Hazardous Materials, 403, 123966. https://doi.org/10.1016/j.jhazmat.2020.123966

Yang, L., Zhang, Y., Kang, S., Wang, Z. and Wu, C. 2021. Microplastics in soil: A review on methods, occurrence, sources, and potential risk. Science of The Total Environment, 780, 146546. https://doi.org/10.1016/j.scitotenv.2021.146546

Yu, H., Zhang, Y., Tan, W. and Zhang, Z. 2022. Microplastics as an emerging environmental pollutant in agricultural soils: Effects on ecosystems and human health. Frontiers in Environmental Science, 10, 217. https://doi.org/10.3389/fenvs.2022.855292

Yu, M., van der Ploeg, M., Ma, X., Ritsema, C.J. and Geissen, V. 2020. Effects of microplastics and earthworm burrows on soil macropore water flow within a laboratory soil column setup. Vadose Zone Journal, 19(1), e20059. https://doi.org/10.1002/vzj2.20059

Zaffar, M. and Lu, S-G. 2015. Pore size distribution of clayey soils and its correlation with soil organic matter. Pedosphere,25(2), 240-249. https://doi.org/https://doi.org/10.1016/S1002-0160(15)60009-1

Zhang, Z., Peng, W., Duan, C., Zhu, X., Wu, H., Zhang, X. and Fang, L. 2022. Microplastics pollution from different plastic mulching years accentuate soil microbial nutrient limitations. Gondwana Research, 108, 91-101. https://doi.org/10.1016/j.gr.2021.07.028

Zhao, Z-Y., Wang, P-Y., Wang, Y-B., Zhou, R., Koskei, K., Munyasya, A.N., Liu, S-T., Wang, W., Su, Y-Z. and Xiong, Y-C. 2021. Fate of plastic film residues in agro-ecosystem and its effects on aggregate-associated soil carbon and nitrogen stocks. Journal of Hazardous Materials, 416, 125954. https://doi.org/10.1016/j.jhazmat.2021.125954

Zhou, J., Gui. H., Banfield, C.C., Wen, Y., Zang, H., Dippold, M.A., Charlton, A. and Jones, D.L. 2021. The microplastisphere: Biodegradable microplastics addition alters soil microbial community structure and function. Soil Biology and Biochemistry, 156, 108211. https://doi.org/10.1016s/j.soilbio.2021.108211

Zhu, D., Bi, Q-F., Xiang, Q., Chen, Q-L., Christie, P., Ke, X., Wu, L-H. and Zhu, Y.-G. 2018. Trophic predator-prey relationships promote transport of microplastics compared with the single Hypoaspis aculeifer and Folsomia candida. Environmental Pollution, 235, 150-154. https://doi.org/10.1016/j.envpol.2017.12.058

Zhu, F., Zhu, C., Wang, C. and Gu, C. 2019. Occurrence and Ecological Impacts of Microplastics in Soil Systems: A Review. Bulletin of Environmental Contamination and Toxicology, 102(6), 741-749. https://doi.org/10.1007/s00128-019-02623-z




How to Cite

Moharana, T., Patnaik, A., Mishra, C., Behera, B. P., Samal, S., & Samal, R. R. (2024). Microplastic-Earthworm Interactions: A Critical Review . International Journal of Ecology and Environmental Sciences, 50(4), 493–504. https://doi.org/10.55863/ijees.2024.0149